Week 1, Monday (8/28) (1
Elementary number theory: avisibility properties of the integers (cf. Apostol, Chapter 1).
Untilfurther notice, a, b, c, d, e, m, n, x, y denote integers; p devotes a positive prime.
A. Definition: We say "a avides n," withen aln, if I c: dc = n. Otherwise, write altn.
Otherwise, write d.In.
Properties (Thm. 1.1). (proofs omitted.)
(b) Aln and n/m => alm (transitivity) (c) Aln and alm => al(antbm) (linearity) (d) Aln => adlan
(e) adlan and a+0=>dln
$\frac{(f)}{(g)} \frac{1}{n}$
(a) $n \mid 0$ (b) $0 \mid n = 0$ (i) $d \mid n = 0 = 0$ (i) $d \mid n = 0 = 0$
$(l) d n and n \neq 0 \Rightarrow d = n $ $(l) d n and n \neq 0 \Rightarrow d = n $
(i) $d n$ and $n \neq 0 \Rightarrow d \leq n $ (j) $d n$ and $n d \Rightarrow d = n $ (k) $d n$ and $d \neq 0 \Rightarrow (n/d) n$
13. Common divisors.
Definition: If all and all, then dis a common divisor of a and b.
Theorem 1.2. Given a and b, I a unique non negative common divisor 2 of a and b such that
$Q = a \times + b \gamma \qquad (*)$

for some x, y & Z.

we call this & the greatest common divisor, or god, of a and b, denoted (a, b).

Moreover, if ela and elb, then elab.

Proof. First: suppose the thm. is true for all a,b =0. Then, for any a,b ∈ Z, we find that the thm. is true for

(a,6) = (lal, 161). (D14: check this.)

Sa it's enough to consider a, 5>0.

We proceed by induction on ath. Since a,b>0, the base case is a+b=0+0=0. We see that the thm. is true in this case with $x,y\in\mathbb{Z}$ chosen arbitrarily, and (a,b)=0.

We now assume the theorem to be true for $0 \le a + b \le k - 1$; we wish to deduce that its true for a + b = k. There are two cases to consider:

(i) b=0. Then the thm. is true with x=1, y=0, (a,b)=a.

lied b>1. Assume a>6: the case a≤6 is similar.

Write b=b and a=a-b. Then a,b=0,

and $0 \le a' + b' = a - b + b = a = k - b \le k - 1$.

By the induction hypothesis, the thin. holds for the pair a, b.

Let d = (a,b): then $\exists x,y \in \mathbb{Z}$:

d = ax + by' = (a - b)x' + by' = ax + b(y - x') = ax + by, (xx)

with x = x', y = y' - x'.

Since d = (a,b') = (a-b,b), we have d(a-b) and d(b), so by linearity d(a-b)+b, so d(a-b) and d(b).

Moreover, if ela and elb, then ellax+by) by linearity, so by (xx), eld.

Finally, d is unique since, given d'ez with these properties, we have did and d'id, sold'=|d| or, since d, d'>0, d'=d.

Theorem 1.4: properties of (a,b). (proofs omitted.)

 $(i) \quad (a,b) = (b,a)$

(ii) (a,(b,c))=((a,b,c)) (we denote the common value by (a,b,c));

(iii) (ac, bc) = lal(b,c)

(iv) (a,1)=(1,a)=1; (v) (a,0)=(0,a)=1a1.

Definition: if (a, b) = 1, we say a and b are relatively prime.

We have:
Theorem 1.5 (Euclid's Lemma) If a and b are relatively prime and alk,
If a and have relatively some and alk
then alc.
THEN GIC.
n . ſ
Proof.
Proot. If $(a,b)=1$, then $\exists x,y \in \mathbb{Z}$: $ax+by=1$. But then
ax+by=1.
But then
cax+cby=c.
Certainly alcax, and by assumption alba, so
cax+cby=c. Certainly alcax, and by assumption albc, so alcby. By linearity, then, alc.