
Chapter 1

Statistics

(SOLUTIONS)

The theory of probability can be applied to the study of statistics, which may be defined as the
branch of mathematics concerned with the collection, classification, analysis, and interpretation of
numerical facts, for the purposes of drawing inferences from their quantifiable probability.

The big idea here is that natural phenomena are, in general, not completely deterministic. That
is, they do not evolve according to precisely predictable formulas or recipes. Still, deterministic
models like those examined in prior chapters often give good approximations to what happens
“in real life.” And we can apply statistical analyses to get a sense of how well these models
reflect reality. And we can thereby quantify, in rigorous ways, statements like “we have this much
confidence that this given situation will yield an outcome in the following prescribed range.”

In this chapter, we present a sketch of the above ideas, with just enough detail that we can
investigate two main (related) tools in statistical inference: hypothesis testing and confidence
intervals. The reader should note, along the way, how our development of these ideas mirrors, and
uses, some previously studied concepts – concepts of definite integrals, areas, Riemann sums, and
the Fundamental Theorem of Calculus.

1.1 Relative frequency density

Flipping coins; the central limit theorem

Consider the binomial experiment of flipping six coins, and recording the number of heads that
come up. The outcome of such an experiment will, of course, be one of the integers 0, 1, 2, 3, 4,
5, 6.

A certain Calculus class at the University of Colorado Boulder repeated this experiment 3,444
times. The results of these 3,444 trials of this experiment are summarized in the following “fre-
quency table.”
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Table 1. Six coins, flipped 3,444 times

Number of heads 0 1 2 3 4 5 6
Frequency 66 341 825 1048 780 333 51

We can compile this data into a histogram, with “frequency” on the vertical axis and “number of
heads” on the horizontal. We get a figure like this:
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Figure 1. Histogram for trials of a coin-flipping experiment

We’ve superimposed, on the above histogram, a certain bell-shaped curve that approximates the
“shape” of the data. The curve we’ve used is a particular kind of bell-shaped curve, known as a
normal curve, and the normal curve we’ve chosen is one that is especially well-suited to the data.
We’ll explain the meaning of all of this in the next section.

(Note that the bars of our histogram are contiguous; there is no space between them. This is a
convention that we will always follow, and that will be important to our interpretation, later in
this section, of histograms in terms of area.)

The “normal” shape of a coin-flipping experiment becomes even more evident if each trial of the
experiment entails a larger number of coins, and if many more trials are performed. For example,
if an experiment comprises the flipping of 50 coins, and this experiment is repeated 300,000 times,
then the result might look like this:
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Figure 2. Histogram for trials of another coin-flipping experiment

(The data for the above histogram were obtained through a simulation. In other words, this data
was not obtained by actually flipping 50 coins, 300,000 times. Rather, a computer mathematics
package was used to pick, at random, 50 numbers, where each number could either be a zero –
representing a coin turning up “heads” – or a one – representing “tails.” The number of zeroes
resulting from this was recorded, and this process was repeated 300,000 times.)

As before, we have fit the histogram with a certain “normal” curve that is particularly well-suited
to the data. In this case, the fit is quite close.

The above discussions illustrate a huge result in probability, which will be central (pun intended)
to our discussions of statistical inference in the next section.

If each trail of an experiment comprises many small, independent factors,
all of which behave similarly, and many trials are performed, then

(under some mild technical conditions) the outcomes of the experiment
will follow a roughly normal distrbution.

The Central Limit Theorem

We will not prove this result; proofs may be found in most advanced texts on probability and
statistics. We do take a moment, though, to note how this theorem reflects our discussions above.
Consider, in particular, the scenario encapsulated by Figure 6.2. There, the 50 coins being tossed
are the “many small, independent factors, all of which behave similarly” of the theorem. (They
are independent in the sense that no one coin affects the behavior of any others. Of course, the
coins might bounce against each other on the way down, but we can assume that any effects
of this contact cancel each other out, in terms of the probability of any coins coming up heads.
Alternatively, we can imagine that the fifty coins are flipped one at a time.) And the 300,000
repetitions are the “many trials” cited in the theorem.

We have not been specific about how close to normal one’s distribution will be, or the manner
in which this might depend on how many factors there are, or how many trials are performed.
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Nor will we elaborate on this much. The important idea, for our purposes, is that more factors
and more trials tend to produce distributions that are more normal. This idea is exemplified
by comparing the scenarios and histograms of Figures 1 and 2 above. (The importance of having
numerous factors and numerous trails may also be appreciated by considering some rather extreme
cases. Specifically, imagine flipping a single coin, any number of times, or a huge number of coins,
just once. In neither case will the histogram thus obtained look at all bell-shaped!)

Mean and standard deviation

Ultimately, we wish to draw stronger connections between histograms (like the ones in Figures
1 and 2 above) and curves that “fit” them (like the ones superimposed on the histograms in the
above figures). To this end, we’ll need formulas for certain quantities related to the “shape” of a
data set.

We begin with the following.

Definition 1.1.1. Let X be a set consisting of n numerical (not necessarily distinct) data points,
labeled x1, x2, x3, . . . , xn. That is,

X = {x1,x2, . . . ,xn}.
Then:

(a) We define the mean x̄ and standard deviation s of X by:

x̄ =
x1 + x2 + . . .+ xn

n
, s =

󰁵
(x1 − x̄)2 + (x2 − x̄)2 + . . .+ (xn − x̄)2

n− 1
.

(b) Suppose the data points in X take on only m distinct values; labeled y1, y2, y3, . . . , ym.
Further, let fj denote the number of times that a given value yj occurs in X, for 1 ≤ j ≤ m.
(That is: various different xk’s can have the same value yj; we denote number of xk’s that do
so by fj. So f1 + f2 + · · ·+ fm = the total number of data points in X = n.) Then the above
quantities x̄ and s can be computed using the following formulas:

x̄ =
f1y1 + f2y2 + . . .+ fnyn

n
, s =

󰁵
f1(y1 − x̄)2 + f2(y2 − x̄)2 + . . .+ fn(yn − x̄)2

n− 1
.

The mean x̄ is considered a measure of the average, or center, or central tendency, of the data in
the set X. To see that this is a reasonable way to think of the mean, let’s consider the formula for
x̄ given in part (a) of the above definition What this formula tells us is this: Suppose you have n
perhaps unequal parts, of sizes x1, x2, . . . , xn, which constitute a whole of size x1 + x2 + . . .+ xn.
If you want to divide this whole into n equal parts, then each part must have size x̄.

Similarly, the standard deviation s may be considered a measure of the spread of the data in X.
The rationale for this way of thinking comes essentially from the quantities (xk − x̄)2 appearing
in the above (first) definition of s. The idea here is that the magnitude of xk − x̄ tells us how far
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the data point xk is from the center x̄ of the data; so adding up all the (xk − x̄)2’s gives us a sense
of how far the data is collectively from this center.

The squaring of each xk − x̄, in our definition of s, ensures that all of our summands are positive,
so that negative terms won’t cancel out positive ones. We divide by n − 1 to “level the playing
field” among data sets of different sizes, so that adding data points to a set does not automatically
increase its standard deviation. (In some definitions of s, the division is by n rather than n − 1.
This is for technical reasons that we will not discuss here.) And finally, we take the square root
at the end to compensate, in some sense, for the squaring that we applied to each xk − x̄.

There is another measure of spread in a data set called mean absolute deviation. This definition
looks like the above definition of s, except that (xk − x̄)2 is replaced by |xk − x̄| for each k,
and no square root is taken at the end. The primary advantage of standard deviation over mean
absolute deviation is that the latter entails absolute values, which are not differentiable everywhere.
This makes calculus much harder to apply, and makes mean absolute deviation unwieldy from a
mathematical perspective.

To highlight the above definitions, and in particular, how they work for data that’s “grouped” into
distinct values, let’s return to our “six coins, flipped 3,444 times” data. The data set X in this
case has size n = 3,444; a data point xk tell us how many heads were observed on a particular
trial (say, the kth trial) of the flipping experiment.

Of course, each xk must be an integer from 0 to 6. That is, our data groups into distinct values
y1 = 0, y2 = 1, y3 = 2, and so on. The frequency fj with which each of these yj’s occurs is given
by Table 1. We may therefore use the formulas from part (b) of Definition 1.1.1 to compute x̄ and
s, as follows:

x̄ =
(66× 0) + (341× 1) + · · ·+ (333× 5) + (51× 6)

3444
= 2.96922,

s =

󰁵
66(0− x̄)2 + 341(1− x̄)2 + · · ·+ 333(5− x̄)2 + 51(6− x̄)2

3443
= 1.24663.

It’s not surprising that our computed value of x̄ is close to 3. The mean measures central tendency,
or average, and if we flip six (fair) coins, then we would expect that, on the “average” flip, half of
those coins (that is, three of them) should come up heads.

There is no equally simple, intuitive interpretation of standard deviation. However, there is a
good “reality check” on the number we obtained for s above. Namely: it’s known that, if data
has an approximate normal distribution, then all or nearly all of that data should fall within three
standard deviations of the mean. In mathematical terms this means that, for such a distribution,
most or all of the data lies in the interval (x̄− 3s,x̄+ 3s).

Is this the case for our coin-flip data set X? Here, we have

(x̄− 3s,x̄+ 3s) = (2.96922− 3× 1.24663,2.96922 + 3× 1.24663) = (−0.77067,6.70911).

Since all data values lie between 0 and 6 inclusive, this interval does, in fact, capture all of the
data – and does so without too much room to spare. That is, the interval does not overshoot the
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actual range of data values by much. All of this tells us that our computed value of s is at least
in the right ballpark.

A different kind of histogram

A cornerstone of probability theory is the interpretation of probability as an area under a graph.
Such an interpretation allows the full force of Calculus – Riemann sums, antiderivatives, the
Fundamental Theorem, and so on – to be brought to bear on the study of probability.

Histograms, as considered above, are a first step towards realizing this interpretation. To go
further, we will next need to rescale, or renormalize, these histograms, through the concept of
relative frequency density (also called probability density). Here’s the definition.

Definition 1.1.2. Let X be a data set, consisting of n real number data points. Consider any
bin, meaning simply an interval of real numbers. Let f denote the number of data points in X
that lie in the bin, and let B denote the length of the bin. Then we define the relative frequency
density of the bin, denoted RFD, by the formula

RFD =
f

B × n
. (1.1.1)

In short, the relative frequency density of a bin is the number of data points in that bin, divided
by the product of the length of the bin and the size of the data set.

Before discussing the importance of relative frequency density, we make the definition concrete by
means of an example.

Example 1.1.1. Consider a data set X of n = 68 exam scores, distributed as follows.

Bin F RFD = F/(B × 68)

[40,60) 11 11/(20× 68) = 0.0081
[60,70) 16 16/(10× 68) = 0.0235
[70,80) 14 14/(10× 68) = 0.0206
[80,85) 13 13/(5× 68) = 0.0382
[85,90) 9 9/(5× 68) = 0.0265
[90,100) 5 5/(10× 68) = 0.0074

We can draw a relative frequency density histogram, which is like the histograms drawn above, but
now, the vertical axis denotes relative frequency density.
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Figure 3. A relative frequency density histogram

Let’s now see why relative frequency density is such a useful construct. To do this, we take the
above definition (1.1.1) of RFD, and multiply both sides by B, to get

RFD× B =
f

n
. (1.1.2)

Let’s look carefully at both sides of equation (1.1.2). The left-hand side gives the height times the
baselength – that is, the area – of the RFD histogram “bar” that lies over the range in question.
See Figure 3 above.

The quantity f/n on the right-hand side of (1.1.2) gives the number of points in X that lie in
the given bin, divided by the total number of points in X. This quotient is just the fraction, or
proportion, of the data that lies in the given bin. Or, put differently: f/n is the probability that a
data point in X, chosen at random, lies in the given range.

Let’s write P (a ≤ X < b) to denote the probability that a data point in X, chosen at random, lies
in the interval [a,b). Since the two sides of (1.1.2) are, in fact, equal, we then have the following
conclusion.

In a relative frequency density histogram, the area of a bar
over an interval [a,b) equals P (a ≤ X < b).

Relationship between area and probability, in an RFD histogram

The bottom line is this: by plotting relative frequency density (rather than just frequency) on
the vertical axis, we obtain histograms where area represents probability. This is a powerful idea,
which we will exploit more fully in the next section.

In the meantime, we note that this idea can be applied “several bars at a time.” For example,
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using the data and histogram from Example 1.1.1 above, we can compute that

P (60 ≤ X < 85) = area enclosed by the bars covering the range [60,85)

= sum of areas of bars over [60,70), [70,80), and [80,85)

= sum of (height times baselength) of these bars
= sum of (RFD times baselength) of these bars
= (0.0235× 10) + (0.0206× 10) + (0.0382× 5) = 0.6320.

That is, 63.2% of the exam scores lie in the interval [60,85).

Of course, we could have argued more simply. Specifically, we could have used the relative fre-
quency density table above to conclude that the proportion of data in [60,85) is (16+14+13)/68 =
0.632353. Example 1.1.1 helps to illustrate the mechanics of Definition 1.1.1, but the real value of
relative frequency density will not be seen until the next section, where we use this construct in
contexts where we can’t simply “count data points.”

In any case, our computation of P (60 ≤ X < 85) has taken advantage of the fact that the interval
[60,85) is precisely spanned by three of our given bins. Were this not the case, we might only be
able to approximate probabilities. For example, given the above information concerning our set X
of exam scores, we might estimate that

P (63 ≤ X < 82) ≈ area enclosed by the bars covering the range [63,82)

= sum of areas of bars over [63,70), [70,80), and [80,82)

= sum of (height times baselength) of these bars
= sum of (RFD times baselength) of these bars
= (0.0235× 7) + (0.0206× 10) + (0.0382× 2) = 0.4469.

So approximately 44.69% of the exam scores lie in the interval [63,82).

The above answer is approximate because we don’t know that the exam scores are evenly dis-
tributed across each bin. For example, knowing that 16 data points lie in the interval [60,70), of
length 10, clearly does not imply that 0.7 × 16 = 11.2 data points lie in the interval [63,70), of
length 7.

We could get better estimates if we had narrower bins. In the next section, we’ll consider bins
that can, at least in theory, be made arbitrarily thin. This will lead us to the study of probability
density functions, which are central to probability theory and statistical inference.
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1.2 Statistical inference

Please note that this section is in “DIY” (Do It Yourself) format: there are various blanks to be
filled in, and questions to be answered, along the way, rather than being left to a set of exercises
at the end. (SOLUTIONS IN RED)

A. Random variables and pdf’s

Let X be a random variable, meaning, essentially, a way of assigning a real number to each possible
outcome of an experiment. We say that X has probability density function, or pdf, given by f(x)
if

P (a < X < b) =

󰁝 b

a

f(x) dx

for any numbers a and b in the domain (set of possible values) of X. (Again, P (a < x < b)
denotes the probability that, if a value x is chosen from X at random, that value will lie between
the numbers a and b.)

a b
x

y

Exercise A1. Fill in the blanks: the mean µ and standard deviation σ of a pdf f(x) can
be obtained as follows. Draw a relative frequency density histogram corresponding to
a sample of points from X. Compute the mean x and the standard deviation
s of the histogram data. Repeat for larger and larger samples, using narrower and narrower bin
widths. Then the tops of the bars of the histogram will smooth out to give you the graph of
your pdf y = f(x) , and your numbers x and s will converge to µ and σ ,
respectively.

Also recall that, for any pdf f(x), with domain (c,d), we must have

• f(x) ≥ 0 for all x in (c,d) (since probabilities can’t be negative), and
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•
󰁕 d

c
f(x) dx = 1 (since the probability that a data point in X lies somewhere in X must equal

100%, or 1).

• P (a < X < b) = P (a ≤ X < b) = P (a < X ≤ b) = P (a ≤ X ≤ b) for all a and b in
(c,d) (probabilities are the same whether or not you include endpoints, since the area under
a single point on the graph of a function is zero).

Remark. Often, the domain (c,d) of a pdf will be taken to be of infinite extent, meaning c = −∞
or d = +∞, or both.

Exercise A2. Consider the following probability density function for a random variable X. The
regions delineated by dashed lines have areas as shown.

 X 106

0.15 0.15 0.12 0.10 0.14 0.22

-8 13 17

Find:

(a) P (X < −8). 0.12

(b) P (10 < X < 17). 0.24

(c) The number c such that 36% of all data values of X are at least 6 and at most c. c = 17

B. Standard normal random variables and pdf’s

A random variable X is said to have a standard normal distribution if the pdf for X is given by

f0,1(x) =
1√
2π

e−x2/2

(where x can be any real number).
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For such an X, we say “X is N(0,1).” In other words, to say X is N(0,1) is to say that, for any
real numbers a, b with a < b,

P (a < X < b) =

󰁝 b

a

f0,1(x) dx =
1√
2π

󰁝 b

a

e−x2/2 dx.

2 11 23 3

FACT: The pdf f0,1(x) has mean µ = 0 and standard deviation σ = 1. (That’s why we call it
f0,1(x).)

Exercise B1. Fill in the blanks:

(a) It can be computed that
󰁕 1

−1
f0,1(x) dx ≈ 0.683. In other words: if X is N(0,1), then about

68.3 % of the values of X lie within one standard deviation of the mean.

(b) It can be computed that
󰁕 2

−2
f0,1(x) dx ≈ 0.955. In other words: if X is N(0,1), then about

95.5 % of the values of X lie within two standard deviations of the mean.

(c) It can be computed that
󰁕 3

−3
f0,1(x) dx ≈ 0.997. In other words: if X is N(0,1), then about

99.7 % of the values of X lie within three standard deviations of the mean.

(d) It can be computed that
󰁕 1.96

−1.96
f0,1(x) dx ≈ 0.950. In other words: if X is N(0,1), then about

95 % of the values of X lie within 1.96 standard deviations of the mean.

(e) It can be computed that
󰁕 2.33

−2.33
f0,1(x) dx ≈ 0.980. In other words: if X is N(0,1), then about

98 % of the values of X lie within 2.33 standard deviations of the mean.

(f) It can be computed that
󰁕 2.58

−2.58
f0,1(x) dx ≈ 0.990. In other words: if X is N(0,1), then about

99 % of the values of X lie within 2.58 standard deviations of the mean.

C. Other normal random variables and pdf’s

If the pdf for a random variable Z follows the basic shape of the standard normal curve, but has
mean µ (instead of 0) and standard deviation σ (instead of 1), we say “Z is N(µ,σ).” Let’s denote
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such a pdf by fµ,σ(x). Then: to say Z is N(µ,σ) is to say that, for any real numbers a, b with
a < b,

P (a < Z < b) =

󰁝 b

a

fµ,σ(x) dx.

The precise formula for fµ,σ(x) is

fµ,σ(x) =
1

σ
√
2π

e−(x−µ)2/(2σ2).

But we won’t need this formula, because we are going to translate N(µ,σ) variables to N(0,1)
variables, shortly.

2 11 23 3

Exercise C1. Recall that the mean of a data set measures the “central tendency,” and that
the standard deviation measures the “spread” (large standard deviation means large spread, and
conversely). Given all this, and also assuming that the solid curve on the graph above is N(0,1),
identify, on the above graph, which of the dashed curves is N(1.5,1); which is N(1,1.5); which is
N(1.5,0.5); which is N(−1,1.5); and which is N(−1,0.5). Please explain your reasoning briefly, in
the space below.

The two tallest curves are the least spread out, so they must have the smallest of the standard
deviations, which is 0.5. The leftmost of these taller curves is centered at -1 and therefore has
mean -1; the rightmost, similarly, has mean 1.5. Similar arguments apply to the other curves.
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D. Translation between N(0,1) variables and N(µ,σ) variables

We have the following NISNID (“Normal Is Standard Normal In Disguise”) Fact, which we present
without proof (but which is not hard to show, using the above formula for the N(µ,σ) pdf fµ,σ(x)):

NISNID Fact. If Z is N(µ,σ), then
Z − µ

σ
is N(0,1).

In stats texts, you will typically find tables of N(0,1) variables, but not other N(µ,σ) variables.
Now we know why: we can compute probabilities associated with N(µ,σ) random variables if all
we know are probabilities associated with N(0,1) random variables.

Here’s an example showing how.

Example. Suppose Z is N(8,1.5). Find P (5 < Z < 11).

Solution. Since, in this case, µ = 8 and σ = 1.5, we have

P (5 < Z < 11) = P

󰀕
5− 8

1.5
<

Z − 8

1.5
<

11− 8

1.5

󰀖

= P

󰀕
−2 <

Z − 8

1.5
< 2

󰀖
= 0.955.

The last step is by the NISNID Fact, and by exercise B1(b) above. Using the strategy of the
above example (and using part B above where necessary), complete the following exercises.

Exercise D1. Suppose Z is N(−2,0.3). Find P (−2.3 < Z < −1.7).

P (−2.3 < Z < −1.7) = P

󰀕
−2.3− (−2)

0.3
<

Z − (−2)

0.3
<

−1.7− (−2)

0.3

󰀖

= P

󰀕
−1 <

Z − (−2)

0.3
< 1

󰀖
= 0.683.

Exercise D2. Suppose Z is N(2,2). Find P (−1.92 < Z < 5.92).

P (−1.92 < Z < 5.92) = P

󰀕
−1.92− 2

2
<

Z − 2

2
<

5.92− 2

2

󰀖

= P

󰀕
−1.96 <

Z − 2

2
< 1.96

󰀖
= 0.95.
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Exercise D3. Suppose Z is N(µ,σ). Find P (µ− 3σ < Z < µ+ 3σ).

P (µ− 3σ < Z < µ+ 3σ) = P

󰀕
µ− 3σ − µ

σ
<

Z − µ

σ
<

µ+ 3σ − µ

σ

󰀖

= P

󰀕
−3 <

Z − µ

σ
< 3

󰀖
= 0.997.

Exercise D4. What exercise D3 directly above says is: if Z is any normal random variable, then
99.7 % of the data lies within three standard deviations of the mean .

E. The sampling distribution of the mean

Consider a dataset of scores on the ALEKS exam taken by 1,399 CU students, at the start of the
Fall 2010 semester. Here’s a histogram for the data (with a normal curve fit to the data as well
as possible):
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Note that the data is not especially bell-shaped (well, it’s kind of like a “skewed” bell). But
now, let’s do something a bit different. Let’s choose a random sample of 30 ALEKS scores
x1, x2, x3, . . . , x30 out of the 1,399, and compute the mean x = (x1 + x2 + x3 + · · · + x30)/30.
Actually, let’s do this many, many times, to get a whole bunch of sample means x (all correspond-
ing to the same sample size n = 30). Here is a histogram (and a best-fit normal curve) for a large
set of sample means that we obtained in this way (with the help of Mathematica).
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Exercise E1. Fill in the blanks: the mean of the above set of 1,399 ALEKS exams scores looks
like it’s roughly equal to the mean of the above set of sample means. (Both numbers look
like they’re somewhere around 57 or so.) However, the standard deviation of the sample means
dataset looks much smaller than that of the original dataset, because the sample means
seem much less spread out (that is, they seem more tightly clustered about the
central value).

Also, even though the original ALEKS data is only very roughly normal in shape, the mean score
data fits a normal curve more closely.

The above observations exemplify the following theorem, which is called The Sampling Distribu-
tion of the Mean, or SDM. This result follows from the Central Limit Theorem, and is critical to
“hypothesis testing” and “confidence intervals” (which we’ll study in the remainder of this assign-
ment).

Theorem (The Sampling Distribution of the Mean, or SDM). Let X be a (not necessarily
normal) random variable, with mean µ and standard deviation σ. Fix a sample size n, and assume
n is at least 30. Then the random variable X consisting of means x of all possible random samples
of X, of size n, IS roughly normal, with mean µ = µ and standard deviation σ = σ/

√
n. That is,

for such X, X is roughly N(µ, σ) = N(µ, σ/
√
n).

Exercise E2. Our original “random variable” X of ALEKS scores data has mean µ = 56.81 and
standard deviation σ = 22.47. Based on the above Theorem, what are the mean µ and standard
deviation σ of the set X of all possible sample means of ALEKS scores (for samples of size n = 30)?

µ = µ = 56.81; σ = σ/
√
n = 22.47/

√
30 = 4.10
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Remark. There are roughly
󰀃
1,399
30

󰀄
≈ 6.52941 · 1061 possible samples of size 30 from a set of

size 1,399. We couldn’t possibly compute the mean for every one of these samples! (Unless,
for example, we were to start at the beginning of the universe, and compute a billion billion
sample means every billionth of a billionth of a second. If we had a billion people working on this
simultaneously, all working on different samples, we could do it somewhere around seven times.
But let’s not.)

For the above histogram of sample means, we computed considerably fewer means – about 1,000,
in fact. A thousand is a lot smaller than 6.52941 · 1061, but it’s large enough to give us a good
qualitative idea of what’s going on.

F. Hypothesis testing of a population mean

Here’s the BIG IDEA. Suppose we have some population, represented by a random variable X.
Suppose that, in the absence of any compelling evidence to the contrary, we are willing to accept
that the mean µ of X is (more or less) equal to some known, specified number µ0. The question
is: what, mathematically speaking, might constitute “compelling evidence to the contrary"?

FOR EXAMPLE: Suppose we know, because of a long history of experimentation and practice,
that the average lifespan of a rat is 684 days. Suppose we now administer a restricted diet to a
group of 105 rats. Let’s assume (although such things are almost never really true in practice)
that these 105 rats represent a random sample of the population of all rats who could conceivably
receive this restricted diet.

Exercise F1. Fill in the blanks: the burden of proof is on us to show that the restricted diet
has any pronounced effect compared to an unrestricted diet. So, until proven otherwise, we assume
that the two diets are essentially the same. That is, we’re assuming that the mean µ of survival
times X of the population of all rats getting the restricted diet is given by µ = 684 (in
days) (your answer should be a number).

Suppose this assumption is true. Suppose we also know, somehow, that our survival times X for
all rats on the restricted diet have standard deviation σ = 286. (Remark: in practice, you will
almost never know the population standard deviation σ directly; if you did, then most likely, you’d
know the mean µ as well, and you wouldn’t have to hypothesize about it, and you’d be done. So
in practice, one often lets the standard deviation s of the sample stand in for σ. In fact, that’s
what we’ve done here.) Then we know, by the SDM Theorem from part E above, and the fact
that our sample size n = 105 is at least 30, that the random variable X of sample means from this
population, for samples of size 105, will have a normal pdf, with mean

µ = µ = 684 (fill in a number)

and standard deviation

σ = σ/
√
n = 286/

√
105 (fill in the correct numbers for σ and n)

= 27.9 (compute σ).

But then we know, by the NISNID Fact of part D above, that the random variable
X − µ

σ
is
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standard normal – that is, this variable is N( 0 , 1 ). This tells us, by part (f) of

exercise B1 above, that 99% of all possible values of the random variable
X − µ

σ
fall between the

numbers -2.58 and 2.58 .

In particular, suppose we actually compute a sample mean x from a sample of X, of size n = 105,

and find that
x− µ

σ
is not between the above two numbers. Well, by the above paragraph, this

is pretty unlikely, if it’s really true that µ = 684. SO, in such a situation, we might conclude
that µ is not equal to 684. That is: in this particular case, we would reject the “null hypothesis”
H0 : µ = 684, and accept the “alternative hypothesis” HA : µ ∕= 684, meaning we’d accept the
conclusion that the restricted diet leads to substantially different results than the unrestricted
diet. Also, we’d say that we accepted this alternative hypothesis “at the 99% level.” What this
means is: there’s at most a 1% chance (1%=100%-99%) that we’d get sample data this far away
from the hypothesized mean, if this hypothesized mean of 684 really were the true mean.

Let’s wrap this up with a particular case study (actual data collected from a 1988 experiment). In
this study, the mean lifespan, in days, of a group of 105 rats given the restricted diet was x = 968.
The standard deviation s was 286, as alluded to above. Question: is this enough for us to accept,
at the 99% level, the alternative hypothesis that the restricted diet yields lifespans significantly
different from those of the unrestricted diet? To answer:

Exercise F2. Compute
x− µ

σ
, for this particular value of x and for the µ and σ computed in

exercise F1 above.

x− µ

σ
=

968− 684

27.9
= 10.175.

Exercise F3. Is the number you computed in exercise F2 above between −2.58 and 2.58? Based
on your answer to this, do we reject the null hypothesis H0 : µ = 684, and accept the alternative
hypothesis HA : µ ∕= 684, at the 99% level? Or do we not reject the null hypothesis? Please
explain. No it’s not. So we reject the null hypothesis, and accept the alternative hypothesis, at
the 99% level.
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Exercise F4. In general (that is, considering again any general population, not necessarily that
of exercises F1–F3 above), how would your test change if you wanted to test the null hypothesis
at the 95% level, or the 98% level, instead of the 99% level? Hint: you only need to change the
numbers you’re comparing things to in exercise F3 above.

Compare

z =
X − µ

σ

to 1.96 or to 2.33, instead of 2.58.

Exercise F5. Back to our rats: Based on your answer to exercise F4 above, do we reject the
above null hypothesis H0 : µ = 684, and accept the alternative hypothesis HA : µ ∕= 684, at the
95% level? At the 98% level? Please explain. Yes. If we reject the null hypothesis at the 99%
level, we will certainly reject it at any lower level.

G. Confidence intervals for a population mean

In Section F above, we considered the question: Is the mean µ of a certain random variable X
equal to a certain, given, “hypothesized” number µ0? (Or, perhaps more accurately: is there
enough evidence to conclude that µ is not equal to µ0?) In this section we ask a slightly different
– and, some would say, more plausible and useful – question, namely: within what range of values
can we say, with a reasonable degree of confidence, a certain population mean lies? In other words,
we investigate how, based on sample data, we can say things like “We are 95% confident that the
mean µ of our population lies between this number and that number.”

The procedure for arriving at such statements is relatively straightforward. It consists of five
steps, as delineated below. Please note: we are going to assume, in outlining these steps, a “95%
confidence level.” We’ll explain what this means, and will consider how to proceed for different
confidence levels, a bit later.
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Exercise G1: fill in the blanks.

STEP 1. Take a sample of values of X, with sample size n, where n is at least 30. Compute the
mean x and standard deviation s of this sample.

STEP 2. We know, from the SDM Theorem of section E above, that the sample means X are
N(µ,σ), so that, by the NISNID Fact of section D above,

X − µ

σ
is N

󰀃
0 , 1

󰀄
.

Therefore, a randomly chosen sample mean x satisfies (by exercise B1(d) above):

P

󰀕
−1.96 <

x− µ

σ
< 1.96

󰀖
= 0.95=95% .

If we multiply everything in parentheses through by σ, and then subtract x from all terms in
parentheses, we get

P

󰀕
−x− 1.96 σ < −µ < −x+ 1.96 σ

󰀖
= 0.95 = 95%.

Multiplying everything in parentheses by −1 (and remembering that mutliplying by a negative
number switches the direction of an inequality), we get

P

󰀕
x+ 1.96 σ > µ > x− 1.96 σ

󰀖
= 0.95 = 95%.

Finally, just reverse the order in which the stuff in parentheses is written, to get

P

󰀕
x− 1.96 σ < µ < x+ 1.96 σ

󰀖
= 0.95=95% . (∗)

STEP 3. Now recall, from the SDM, the formulas for µ and σ in terms of µ, σ, and n:

µ = µ and σ =

σ√
n .

So equation (∗) can be rewritten:

P

󰀕
x− 1.96

σ√
n
< µ < x+ 1.96

σ√
n

󰀖
= 0.95=95% . (∗∗)

Or in other words: there is a 95 % chance that, if a mean x is computed from a random

sample of size n, then µ will lie between x− 1.96
σ√
n

and x+
1.96

σ√
n .

STEP 4. Now as discussed in part F above, we typically don’t know the population standard
deviation σ, so we approximate it with s, which is the sample standard deviation . Then
equation (∗∗) reads:
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P

󰀕
x− 1.96

s√
n
< µ < x+ 1.96

s√
n

󰀖
≈ 0.95=95% .

STEP 5. Because of the reasoning outlined above, we call the interval

󰀕
x− 1.96

s√
n
,x+ 1.96

s√
n

󰀖

a 95% confidence interval for the population mean µ.

Exercise G2. Here are the “navel ratios,” meaning the ratios

height
VUD

(VUD stands for “vertical umbilical displacement,” or belly-button height) of a random (well, not
really random, but let’s pretend) sample of 48 CU students.

1.60 1.60 1.56 1.63 1.62 1.63 1.65 1.65 1.65 1.67 1.68 1.63
1.60 1.66 1.59 1.64 1.61 1.65 1.62 1.64 1.67 1.56 1.58 1.58
1.58 1.70 1.59 1.61 1.67 1.63 1.58 1.57 1.67 1.66 1.67 1.63
1.68 1.59 1.55 1.54 1.60 1.60 1.66 1.58 1.66 1.66 1.65 1.61

(a) Find the mean x and standard deviation s of the above navel ratio data. Write your answers
to three decimal places.

x = 1.623, s = 0.040
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(b) Use the information from part (a) above to construct a 95% confidence interval for the mean
navel ratio µ of all CU students.

󰀕
x− 1.96

s√
n
,x+ 1.96

s√
n

󰀖
=

󰀕
1.623− 1.96 · 0.040√

48
,1.623 + 1.96 · 0.040√

48

󰀖

=(1.612,1.634).

Exercise G3. In general (that is, considering again any general population, not necessarily that
of exercise G2 above), suppose you wanted, instead of the 95% interval of STEP 5 above, a 98%
confidence interval. How would the interval described in STEP 5 above change? In other words,
what would a 98% confidence interval for µ look like, in terms of x, s, and n? What about a 99%
confidence interval? Please explain. Hint: consider exercises B5 and B6 above.

The 98% and 99% confidence intervals are, respectively,
󰀕
x− 2.33

s√
n
,x+ 2.33

s√
n

󰀖

and 󰀕
x− 2.58

s√
n
,x+ 2.58

s√
n

󰀖
.
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Exercise G4. Construct 98% and 99% confidence intervals for the mean navel ratio µ of all CU
students. The intervals are (1.610,1.636) and (1.608,1.638) respectively.

Exercise G5. Using the sample data from part F above, construct 95%, 98%, and 99% confidence
intervals for the mean survival time µ of rats fed the restricted diet described there.

95% :

󰀕
x− 1.96

s√
n
,x+ 1.96

s√
n

󰀖
= (913.3,1022.7).

98% :

󰀕
x− 2.33

s√
n
,x+ 2.33

s√
n

󰀖
= (903.0,1033.0).

99% :

󰀕
x− 2.58

s√
n
,x+ 2.58

s√
n

󰀖
= (896.1,1039.9).
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Exercise G6. One theory says that, on average, in many populations, the “navel ratio” studied
in the above exercises is about equal to the “golden ratio,” which equals (1 +

√
5)/2 ≈ 1.618.

Test this theory, at the 99% level, for the population of all CU students, using the above navel
ratio data. Use the procedure outlined in part F of this section. Make sure to state clearly your
null and alternative hypotheses.

H0 : µ = 1.618

HA : µ ∕= 1.618

z =
x− µ0

(s/
√
n)

=
1.623− 1.618

(0.040/
√
48)

= 0.866.

Since |0.866| < 2.58, we do not reject H0 at the 99% level.
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