Wednesday, 11/20 - (1)

Applications of SDM II: Confidence intervals.

Let X have mean pe and std. dev. o; let n = 30; let

X = 2 means of size-n samples from X).

5DM says that, under mild conditions, the "test statistic" $7 = \overline{X} - I$.

 $\frac{Z}{z} = \frac{\overline{X} - \mu}{(s/\sqrt{n})}$ is roughly N(0,1).

So for example, in such a case,

$$P(-a.58 < \frac{\overline{X} - \mu}{(5/\sqrt{n})} < 2.58) = 99\%.$$

Now inside of the P(), do some algebra to get u by itself in the middle:

(a) Multiply everything through by -5 //n.

(b) Add X to each term.

The result is:

$$P\left(\overline{X}-2.58 \leq \sqrt{\mu} < \overline{X}+2.58 \leq \sqrt{h}\right) = 99\%.$$

Interpretation: 99% of the time, when a size-n random sample from X is chosen, and

x and s are computed, the interval

 $(\bar{x} - \lambda.58 \%_{\bar{n}}, \bar{x} + \lambda.58 \%_{\bar{n}})$ (CI₉₉)

will contain the true population mean u.

The interval (CIqq) is called a 99% confidence interval for u.

Example. In studying the Etruscan Empire $(\sim 700-300 \text{ BC})$, anthropologists measure the breadth of a random" Sample of n=84 male Etruscan skulls, and find that

 $\bar{x} = 143.77 \, \text{mm}, \, s = 5.97 \, \text{mm}.$

Construct a 99% confidence interval for mean male Etruscan skull breadth me.

Solution.

The interval is

(143.77-2.58 · \square 143.77+2.58 · \square 184)

= (142.09, 145.45).

Notes on (CIqq) in general.

1) Note that the interval (CIqq) is centered about the sample mean \overline{X} .

d) A 95% or 98% confidence interval for µ would look like (CIqq), but

with 2.58 replaced by 1.96 or 2.33 respectively.

3) So: more confidence requires a wider interval.

Example 2.

Let μ be as in Example 1. Test the null hypothesis

Ho: $\mu = 132.44$ mm

against the atternative hypothesis

Ha: Mx 132.44 mm

at the 99% level.

LNote: 132.44 is the mean skull breadth of present-day Italian males. So this test helps answer whether Etruscans were native to Italy.]

Solution:

We compute the z-statistic

 $z = \overline{x} - \mu_0 = \frac{143.77 - 132.44}{(5/\sqrt{n})}$

= 17.39.

Since | z | > 2.58, we reject Ho, and accept Ha, at the 99% level.

Note: in general,
"reject Ho: $\mu = \mu_0$, and accept H_A : $\mu \neq \mu_0$, at the polexel"
is the same as
"no is outside the p to confidence interval for u."