The Poisson Distribution.

A) Example: A computer program contains, on average, 4 errors per 10,000 lines of code. Let X be the actual number of errors found in a 10,000-line block.

Find P(X=k) (k>0).

Solution

In a <u>single</u> line of code, only <u>rarely</u> would we expect <u>more</u> than one error. So in a single line, we'd expect a "success" (error) or "failure" (no error), with $P(success) = \frac{4}{10000}$.

So X, the number of errors in 10,000 lines, is approximately $B(10,000, \frac{4}{19000})$.

(assuming independence of errors). So $P(X=k) \approx \binom{10,000}{k} \left(\frac{4}{10,000}\right) \left(\frac{4}{19000}\right). \tag{*}$

For example, $P(X=6) \approx 0.104206$.

Now if we break up our 10,000 lines into 20,000 pieces, instead of 10,000, then we get (*) with 20,000 instead of 10,000. Moreover, our approximation improves.

In general, replacing 10,000 with N, above, gives a better approximation the larger N/is. Conclusion:

$$P(X=k) = \lim_{N \to \infty} {N \choose k} \left(\frac{4}{N}\right)^k \left(\frac{1-4}{N}\right)^{N-k}$$

For example, the probability of 6 errors in a block of 10,000 lines is

$$P(X=6) = \frac{4^6}{6!} = 0.104196.$$

B) Generalization: the Poisson distribution.

Consider an event that happens, on average, λ times in every interval (of time space, etc.) of some fixed extent.

Examples.

- (a) On average, in a meteor shower,
 5 meteorites hit the earth every square
 kilometer.
- (b) On average, in Target during peak hours, 25 people enter the soft-checkout live every 15 minutes.
- (c) On overage, a computer CPU, running certain software, receives 3 instructions per nanexamed.

(d) On average, a sample of polonium emits 3.8715 d-rays per 7.5 second period.

Let X be the number of times the event actually occurs in an interval of the given extent. Then X is said to be a Poisson ru with parameter λ (in short: X is $P(\lambda)$), and

$$P(X=k) = \frac{\lambda^k}{k!} e^{-\lambda}$$
 $(k=0,1,2,3,...)$

pmf for a Poissou random variable

Example 1. In 1911, Ernest Rutherford et al. observed that, on average (over several hours), a sample of polonium emitted $\lambda = 3.8715 \, \text{x-rays}$ every 7.5 seconds.

Let X be the number of rays emitted in a random 7.5 second period. Find P(X=K)

Solution.

We have
$$P(X=k) = \frac{\lambda}{k!} e^{-\lambda} = \frac{3.87/5}{k!} e^{-3.87/5}$$
.

Here are the first few values of the pmf:

	k 3.8715/.	
<u> </u> <u> </u>	P(X=k)= 3.8715 ke-3.8715/k!	
0	0.020g	
J	0. <i>0806</i>	
<u>d</u>	0.1561	
3	0.2014	
4	0.1950	
5	0.1510	

Next	time:	mean	and	Variance	of a	Poisson	rv.
•							•