FIRST MIDTERM EXAM: SOME PRACTICE PROBLEMS

Numerization key:

A	В	С	D	E	F	G	Н	I	J	K	L	M
11	12	13	14	15	16	17	18	19	20	21	22	23
N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z
0.4	٥r	O.C	07	00	00	20	0.1	20	22	2.4	35	20

1. Divide the given number b into the given number a, yielding a quotient and a remainder. That is, write

$$a = b \cdot q + r$$

where q and r are integers and $0 \le r < b$.

- (a) a = 465, b = 33.
- (b) a = 466,655, b = 3,233.
- (c) a = 3,333,333, b = 12.
- (d) a = 4,849, b = 12.
- (e) a = 4,848, b = 12.
- (f) a = 44, b = 44,332,211.
- (g) a = -47, b = 15.
- 2. Let k = 19 and $m = 111 = 3 \cdot 37$.
 - (a) Use RSA with this k and m to encode the message "C."
 - (b) Check your work by decoding the coded message from part (a) of this problem, using the same k and m. Hint:

$$19 \cdot 19 - 72 \cdot 5 = 1.$$

- 3. Let k = 31 and $m = 221 = 13 \cdot 17$.
 - (a) Use RSA with this k and m to encode the message "Y."
 - (b) Check your work by decoding the coded message from part (a) of this problem, using the same k and m. Hint:

$$31 \cdot 31 - 192 \cdot 5 = 1$$
.

- 4. Let k = 43 and $m = 1{,}517 = 37 \cdot 41$. (37 and 41 are both prime.)
 - (a) Use RSA with this k and m to encode the message "AI."
 - (b) Check your work by decoding the coded message from part (a) of this problem, using the same k and m. Hint:

$$43 \cdot 67 - 1{,}440 \cdot 2 = 1.$$

- 5. Let k = 49 and $m = 1,271 = 31 \cdot 41$. (31 and 41 are both prime.)
 - (a) Use RSA with this k and m to encode the message "AB."
 - (b) Check your work by decoding the coded message from part (a) of this problem, using the same k and m. Hint:

$$49 \cdot 49 - 1,200 \cdot 2 = 1.$$

6. A message is encoded using RSA, with k = 83 and $m = 323 = 17 \cdot 19$. Which of the following equations would be relevant to decoding? Circle the correct answer and explain.

$$83.59 - 288.17 = 1.$$
 $83.144 - 323.37 = 1.$ $288.66 - 83.229 = 1.$ $17.9 - 19.8 = 1.$

- 7. (a) Use the Euclidean Algorithm to find gcd(123, 321).
 - (b) Find natural numbers x and y solving

$$123x - 321y = \gcd(123, 321).$$

- 8. (a) Use the Euclidean Algorithm to find gcd(247, 156).
 - (b) Find **integers** x and y solving

$$247x - 156y = \gcd(247, 156).$$

Here, x and y don't need to be positive.

(c) Find **natural numbers** x and y solving

$$247x - 156y = \gcd(247, 156).$$

Hint: add 156 to the number x you found in part (b) of this problem. Then add the right thing to the number y you found in part (b) of this problem.

9. (a) Find natural numbers x and y such that

$$45x - 56u = 1$$
.

- (b) Using the RSA decoding algorithm, with k=45 and m=87, decode the message "17," to obtain a one-letter message.
- 10. (a) Use the Euclidean Algorithm to find positive integers x and y such that

$$55x - 64y = 1.$$

- (b) Using the numerization key above and the RSA decoding algorithm, with k=55 and m=85, decode the message "25," to obtain a one-letter message.
- 11. (a) Use the Euclidean algorithm to find $gcd(31, \varphi(55))$.

Answer: $gcd(31, \varphi(55)) =$ _____.

(b) Use the Euclidean algorithm to find integers x and y with $31x - \varphi(55)y = 1$. Here, x and y do not need to be positive.

(c) Tweak your answer to the previous part of this problem, to find *positive* integers (that is, natural numbers) x and y with $31x - \varphi(55)y = 1$.

Answer: $x = ____, y = ____$

(d) Using k=31 and m=55, decode the message 12, and denumerize to obtain a single-letter message.

Answer: Message = _____

- 12. Find gcd(14,000, 7,700), by factoring both numbers into prime powers (do not use the Euclidean algorithm).
- 13. Find gcd(454,545,000,9,990,000), by factoring both numbers into prime powers (do not use the Euclidean algorithm). Hints: $999 = 9 \cdot 111$; $111 = 3 \cdot 37$; $454,545 = 45 \cdot 10,101$; $45 = 9 \cdot 5$; $10,101 = 7 \cdot 13 \cdot 111$.
- 14. (15 points; 5 points each)
 - (a) Use the Euclidean algorithm to find gcd(63,111).
 - (b) Use the Euclidean algorithm to find integers x and y such that $63x 111y = \gcd(63,111)$.
 - (c) Find positive integers (that is, natural numbers) x and y such that $63x 111y = \gcd(63,111)$.
- 15. (15 points; 5 points each)

- (a) Use the Euclidean algorithm to show that gcd(17,220) = 1.
- (b) Use the Euclidean algorithm to find natural numbers x and y with 17x 220y = 1.
- (c) Use the RSA decoding algorithm with k=17 and $m=253=11\cdot 23$ to decode the message 20. Express your answer as a single letter, using the numerization key above.