Wednesday, 9/24 - (1)
Detuition 1
A <u>set</u> is a collection of distinct objects, called elements of the set.
ways of describing Idefining Identing sets:
* symbols/hames
"set builder notation.
Examples. Symbol/hame
"mathematik verannery"
= {a,e,a, h, l, k, m, n, r, t, v, v} listings (order = { m,a,th,e,i,k,v,r,q,n,v} doesn't watter) = { letters x: x is a letter in set builder "mathematik veranugen} notation
Note: the braces mean "the set consisting of;" the colon means "such that."
a) $\mathbb{Z} = the set of all integers$ $= \{, -2, -1, 0, 1, 2, \}$ $= \{ A + 1 + 2 \}$
= 20,±1,±2, § The symbol Z is <u>reserved</u> for the set of integers.
3) $E = the set of even integers = \frac{3}{2}0, \pm 2, \pm 4,= \frac{3}{2}$
Cread "is an element of"

4)
$$F = \{ \text{even integers from } -6 \text{ to } 4 \text{ inclusive } \}$$

= $\{ m \in E : -6 \le m \le 4 \} = \{ -6, -4, -2, 0, 2, 4 \}$

5)
$$2+7Z=\{n\in Z: n=2+7k \text{ for some } k\in Z\}$$

=\frac{2}{2}...,-12,-5,2,9,...}

6) In general, for a, b \(\bar{Z}, \) a + b \(\bar{Z} \) denotes \(\bar{Z} \) \(\bar{N} = \alpha + b k \) for some
$$k \in \mathbb{Z}_{\bar{Z}}^2$$
.

Fig. the set \(\bar{E} \) above may be denoted $O + \dar{Z}_{\bar{Z}}^2$, also written $\dar{Z}_{\bar{Z}}^2$. Similarly, 2 odd integers \(\bar{S}_{\bar{Z}}^2 \) may be denoted $1 + \dar{Z}_{\bar{Z}}^2$.

7)
$$[-3,5] = 2$$
 real numbers $x : -3 \le x < 5$].
 $(-3,5) = 2$ real numbers $x : -3 \le x \le 5$].
Warning: $(-3,5)$ also denotes a point in the plane!

8)
$$SL(2, \mathbb{Z}) = \{ \text{matrices} (ab) : a, b, c, l \in \mathbb{Z}, all - bc = 1 \}.$$

9) More special, reserved symbols:

10) You can have sets of sets, or sets containing sets and other things, like

{ {1,2}, {3}}, {∅}, {∅}, {π,5,√ā}, x,y,z}, {7, {7}, {7}, {7}}}.

Definition 2.

Let A, B be sets. We say A is a subset of B, written $A \leq B$, if every element of A is also in B (that is: if no element of A lies outside of B). Other wise, we write $A \neq B$.

E.g. for the sets defined above:

N ≤ I ; I ≤ IR (we can write N ≤ I ⊆ IR); 2+71 ⊆ I; [-3,5) ⊆ IR; F ⊆ E; Ø ≠ II; F ≠ 2+7I;

 $\{\{1,2\}\}\} \subseteq \{\{1,2\},\{3\}\},$ $\emptyset \subseteq \text{any set whatseever};$ any set whatsoever $\subseteq \text{itself}.$

Definition 3

The cardinality of a set 5, denoted 151, is the number of elements of 5.

E.g. for the sets above,

|F|=6, |L|=12, |\$/=0,

|IN| = |Q| = |IR| = |E-3,5| = |E| = |2+7Z| = |5L(2,Z)|= ∞ .