
Math 2001–004: Intro to Discrete Math Fall 2024

Stuff about Proofs and Other Phenomena (S-POP)

Part A: Communicating mathematics.

Math is hard (according to reliable sources). But there are things you can do to make it
easier. One of the main things is the following:

BIG IDEA. You can make math easier, for your audience and yourself, by
making the effort to communicate mathematics clearly.

Note the word “clearly.” What does that mean? We’ll get to that shortly. In the meantime,
there’s another important word in the above BIG IDEA—the word “yourself.” That word
is there to highlight:

ANOTHER BIG IDEA. Clarity of communication not only reflects, but also
reinforces, clarity of thought.

That is: not only do you need to understand it well to explain it well, but if you can explain
it well, then most likely you’ve understood it well too.

Back to communicating mathematics clearly, then. Here are some tips. Please note that
a number of these are adapted from Section 5.3 of Book of Proof by Richard Hammack.
(There’s a link to this text on our Canvas page.) We’ve not included all of those tips
because we don’t necessarily subscribe to all of them. As Hammack himself writes,

Unlike logic and mathematics, where there is a clear-cut distinction between what
is right or wrong, the difference between good and bad writing is sometimes a
matter of opinion.

In summary, use your judgement, but you may use the following to guide you.

1. Speak in complete sentences. The nice thing about math (well, one nice thing,
anyway; there are many others) is that complete sentences can be quite brief: for
example, “x ≥ 2” is a complete sentence. It has a subject, an object, and a verb; what
else do you need?

2. Use math symbols appropriately. In particular, don’t use math symbols like “⇒”
or “→” to mean “equals.” The symbol “⇒” means “implies” (example: S is a square
⇒ S has four right angles; see Section B(i) below); the symbol “→” means “converges
to” or “approaches” (example: limx→0(sin x)/x = 1; see Section B(iv) below). Please
do not use either of these symbols to denote equality.

3. Separate mathematical expressions and statements with “connective tissue”
(words). For example, consider the statement

Since 2x+ 4 ≥ 0, x ≥ −2.
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The meaning is not so clear; it’s better to write

Since 2x+ 4 ≥ 0, it follows that x ≥ −2

or

Since 2x+ 4 ≥ 0, we see that x ≥ −2.

4. Write in the first person plural (sometimes called “the editorial ‘we’ ”). For
example, write “We will now show that. . . ” instead of “I will now show that. . . .” It’s
more inviting, and it’s completely standard in mathematics writing.

5. Explain each new symbol. For example, instead of “If n is an even integer, then
n = 2k,” it would be better to write “If n is an even integer, then n = 2k for some
integer k.” Otherwise, the reader might flip back though pages trying to figure out
what k is and where it was defined, when in fact it has not been.

6. Be specific. Avoid words like “it” or “the expression” or “the given quantity” if these
words are ambiguous. For example, instead of “If m is an integer, k = 2m + 1, and
n = 2k + 1, then it’s odd,” or “If m is an integer, k = 2m + 1, and n = 2k + 1, then
the given quantity odd,” write “If m is an integer, k = 2m + 1, and n = 2k + 1, then
n is odd.” (After all, “If m is an integer, k = 2m+ 1, and n = 2k + 1, then k is odd”
is also mathematically correct.)

Part B: Some varieties of mathematical proof

What follows is a brief, and by no means exhaustive (though perhaps a bit tiring), introduc-
tion to various varieties and strategies of mathematical argument and proof.

Section B(i): P ⇒ Q and related results.

If P and Q are statements of any kind, then the statement “P ⇒ Q,” read “P implies Q,”
means anytime P is true, Q follows. Other ways of saying “P ⇒ Q” are: “if P , then Q;”
“Q if P ;” “Q whenever P ;” “Q if P ;” “P only if Q.”

To be more precise about what “P ⇒ Q” means, from a formal point of view, we’d need to
get into truth tables and so on. If you’re interested, see Section 2 of Book of Proof. Instead,
we take it on faith that we understand a statement like “today is Saturday implies it’s the
weekend.” (Convince yourself that this statement has the same meaning as “if today is
Saturday, then it’s the weekend,” “it’s the weekend if today is Saturday,” “today is Saturday
only if it’s the weekend.”)

The so-called direct proof of a statement like P ⇒ Q goes as follows (we will discuss other
methods of proof a bit later):

Proposition B(i)-1. P ⇒ Q.

Proof. Assume P . [Anything you see in square-brackets is intended not as part of the proof
in question, but as a note about what’s going on. In this case, what’s going on is that you
have to do some stuff here to get to the point where you can conclude:] Therefore, Q.
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So P ⇒ Q. □

Remark A. You should always end a proof with some kind of clear indication that you are
done. Here we have used a box (“□”); you’ll see this notation frequently in mathematical
texts and research articles. Alternatively, you might want to use “QED,” or some other
indicator.

Remark B. The last line (“So P ⇒ Q”) of the above proof summarizes what has been done.
A line like this is not, strictly speaking, necessary, but does serve as a useful reminder. Such
a reminder is especially useful in longer proofs, where there’s so much “stuff” in between the
P and the Q that the upshot of the whole argument bears emphasizing. In shorter proofs,
you might find that such an concluding line is unnecessary. Use your judgement.

To illustrate Proposition B(i)-1, let’s recall that an even number is an integer that equals 2k
for some integer k; an odd number is an integer that equals 2k − 1 for some integer k. We
have:

Proposition B(i)-1E. If n is an even number then n− 1 is an odd number.

Proof. Assume n is an even number. We may write n = 2k for some integer k. But then
n− 1 = 2k − 1, so n− 1 is odd.

So if n is an even number, then n− 1 is an odd number. □
(The “E” in the subscript of Proposition B(i)-1E indicates that this proposition exemplifies
Proposition B(i)-1.)

Remark. It may be tempting to omit the first line (“Assume n is an even number”) of the
above proof. We recommend against it. In a direct proof of P ⇒ Q, we are not simply
proving that Q is true; we’re proving that Q follows from the assumption of P . That
assumption is perhaps implicit in the statement of the proposition, but it’s best to make it
explicit in the proof.

Exercise B(i)-1. (a) Prove that the sum of two odd numbers is even. (b) Prove that the
product of two odd numbers is odd.

Exercise B(i)-2. (a) Prove that, if n is an even number, then n2 is divisible by 4. (b)
Prove that, if n is an odd number, then n2 − 1 is divisible by 4.

Exercise B(i)-3. Let a, b, and c be integers. Recall that we say “a divides b,” written a|b,
if there exists an integer q such that b = aq. (a) Prove that, if a|b and a|c, then a|(b + c).
(b) Prove that, if a|b, then a|nb for any integer n.

We next note that the statement P ⇒ Q is (always, always, ALWAYS) logically equivalent
to its contrapositive: the latter is, by definition, the statement ∼Q ⇒∼P . Here, the symbol
“∼” stands for “not:” so ∼P means “not P ,” or “the negation of P .” (Sometimes you’ll
see “¬” used in place of “∼.”) Think about it: for example, the contrapositive of “if today
is Saturday, then it’s the weekend” is “if it’s not the weekend, then today is not Saturday.”
The two statements mean the same thing.

We can therefore also prove P ⇒ Q by contraposition, as follows:
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Proposition B(i)-2. P ⇒ Q.

Proof. Assume ∼Q. [Do what you got to, to get to:] Therefore, ∼P .

So P ⇒ Q. □

For example:

Proposition B(i)-2E. If m
2 is an odd number, then m is an odd number.

Proof. Suppose m is not odd. Then m is even, so m = 2k for some k. But then m2 =
(2k)2 = 4k2 = 2(2k2), so m2 is even, and hence not odd.

So if m2 is odd, then m is odd. □

Remark. In the above proof, we used the fact that every integer m must be either even or
odd, but not both. This may seem obvious, but is worth explaining. It follows from the
division algorithm, which tells us we can divide 2 into m, to get a unique integer quotient
k and a unique non-negative integer remainder r, and this remainder must be less than the
divisor 2. That is, m = 2k + r where k and r are integers, and either r equals 0 (in which
case m is even) or 1 (in which case m is odd).

More generally, the division algorithm tells us that we can alway divide an integer by
another, positive integer, to get a quotient and a remainder that’s smaller than the divisor.
More formally:

The division algorithm. Given an integer m and a positive integer b, there are unique
integers q and r with m = bq + r and 0 ≤ r < b.

The division algorithm also probably seems pretty obvious, or at least familiar. But in fact,
if follows from a fairly deep fact, called the well-ordering principle, concerning the integers.
See, for example, Axiom 3.1.1, p. 105, of our course text. We won’t discuss this further,
except to say that what’s obvious in mathematics is sometimes quite profound. (In fact,
often, the more obvious, the more profound.)

Exercise B(i)-4. Supply a proof by contraposition of Proposition B(i)-1E.

Exercise B(i)-5. Supply a direct proof of Proposition B(i)-2E. Hint: Suppose m2 is odd.
Then we can write m2 = 2ℓ + 1 where ℓ is an integer. Now write m = 2k + r, where k is
an integer, and r equals either 0 or 1. (Why can we write m this way?) Now we have two
different ways of writing m2; set them equal, do some algebra, and see what you can deduce
about r.

Exercise B(i)-6. Using contraposition prove that, if n is not divisible by 4, then n is not
divisible by 12.

Whether, in a given instance, to use the direct or the contraposition method to prove P ⇒ Q
comes down to a matter of choice; which one seems to work better in the given situation?

WARNING: P ⇒ Q is not logically equivalent to its converse, meaning the statement
Q ⇒ P . For example, “If today is Saturday then it’s the weekend” is not equivalent to

4



Math 2001–004: Intro to Discrete Math Fall 2024

“If it’s the weekend, then today is Saturday.” (After all, if it’s the weekend, it might be
Sunday.) So don’t ever try to prove P ⇒ Q by assuming Q, and deducing P .

Incidentally, in the above paragraph, we have demonstrated that the statement “If it’s the
weekend, then today is Saturday” is false by the method of counterexample. That is, we
have produced a single scenario where the statement doesn’t hold. In general, to prove that
a statement X ⇒ Y is false, it’s enough to exhibit a single situation where X holds but Y
doesn’t.

Exercise B(i)-7. Consider the statement:

If x is odd, then x is divisible by 3.

Prove that this statement is false, using the method of counterexample.

Exercise B(i)-8. Consider the converse to the statement of Exercise B(i)-3(a). Is this
converse statement true? If so, prove it. If not, show that it’s false by counterexample.

Finally, we note that the statement P ⇔ Q, read “P if and only if Q,” or more briefly “P iff
Q,” by definition means P ⇒ Q and Q ⇒ P . One way to prove P ⇔ Q is to demonstrate
one at a time the two statements it comprises – that is:

Proposition B(i)-3. P ⇔ Q.

Proof. (a) First we show that P ⇒ Q: assume P . [Do some stuff in here to get to:] Therefore,
Q.

So P ⇒ Q, as required.

(b) Now we show that Q ⇒ P : assume Q. [Do some stuff in here to get to:] Therefore, P .

So Q ⇒ P , as required.

Since P ⇒ Q and Q ⇒ P , we conclude that P ⇔ Q. □

Exercise B(i)-9. Use the method outlined in Proposition B(i)-3 to show that an integer
n is divisible by 6 if, and only if, n is both even and divisible by 3. Hint for one of the
directions: note that, if n is divisible by 3, then n = 3k for some integer k. Now if n is also
divisible by 2 – that is, if n is even – what does the equation n = 3k tell you about k? Use
Exercise B(i)-1(b).

Remark. An “if and only if” proof can sometimes be shortened by observing that each step
in the proof not only is implied by, but also implies, the previous one. For example, consider
the following:

Proposition B(i)-3E. n is an even number if and only if n− 1 is an odd number.

Proof. n is even iff n = 2k for some integer k, which is true iff n − 1 = 2k − 1 for some
integer k, which is true iff n− 1 is odd.

So n is even iff n− 1 is odd. □

Exercise B(i)-10. Let x be a real number. Use the method of proof shown in Proposition
B(i)-3E to show that x2 = 1 iff x = −1 or x = 1. (Pretend you didn’t know this already.)

5



Math 2001–004: Intro to Discrete Math Fall 2024

Hint: x2 = 1 iff x2 − 1=0. Now factor x2 − 1, and use the fact that, for a, b real numbers,
the product ab equals zero iff a = 0 or b = 0 (or both).

Part B(ii): A ⊆ B and related results

As a nice illustration of what can be done with the idea of P ⇒ Q, we consider the statement
A ⊆ B. Here A and B are sets; the statement A ⊆ B is read “A is a subset of B,” which
just means A is contained in B, which just means every element of A is also an element of B,
which just means P ⇒ Q, where P is the statement “x ∈ A” and Q the statement “x ∈ B.”
(The symbol “∈” is read “is an element of.”) So an “A ⊆ B” result is a “P ⇒ Q” result, of
a certain kind.

Proposition B(ii)-1. A ⊆ B.

Proof. Let x ∈ A. [Now do what you’ve got to, to get to:] Therefore, x ∈ B.

So A ⊆ B. □

As an easy, but illustrative, example, let’s recall that, for general sets S and T , S ∩T means
the set of all objects that belong to S and belong to T . Then:

Proposition B(ii)-1E. For any sets S and T , we have S ∩ T ⊆ S.

Proof. Let x ∈ S ∩ T . Then x ∈ S and x ∈ T , so in particular, x ∈ S. So S ∩ T ⊆ S. □

Exercise B(ii)-1. Show that the set of all integer multiples of 4 is contained in the set of
all even numbers.

Exercise B(ii)-2. Show that the set of all perfect fourth powers is contained in the set
of all perfect squares. (A perfect fourth power in an integer m such that m = ℓ4 for some
integer ℓ; similarly we define perfect squares.)

For the next two exercises, recall that, for sets S and T , S ∪ T denotes the union of S and
T , meaning the set of all things in S or in T .

Remark. In mathematics, the word “or” is always, unless otherwise specified, used in the
inclusive sense. That is, a mathematical statement of the form “X or Y ” will always, unless
otherwise stated, mean “X or Y or both.” In particular, S ∪ T denotes the set of objects
either in S, or in T , or perhaps in both. For example, {integer multiples of 3} ∪ {integer
multiples of 5} includes the number 45, since 45 is both a multiple of 3 and a multiple of 5.

Exercise B(ii)-3. Show that, for any sets S and T , we have S ⊆ S ∪ T .

Exercise B(ii)-4. Show that, for any sets A, B, and C, we have A ∩B ⊆ A ∪ C.

Now two sets are, by definition, equal if each is contained in the other: so to prove two sets
A and B are equal, it’s enough to prove that A ⊆ B and that B ⊆ A. Like this:

Proposition B(ii)-2. A = B.

Proof. (a) We first show that A ⊆ B: let x ∈ A. [Now go until you get to:] Therefore,
x ∈ B. So A ⊆ B, as required.
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(b) We now show B ⊆ A: let x ∈ B. [Now go until you get to:] Therefore, x ∈ A. So B ⊆ A,
as required.

Since A ⊆ B and B ⊆ A, we have A = B. □

As a concrete example, let’s define the symmetric difference C∆D of sets C and D by

C∆D
def’n
= (C −D) ∪ (D − C).

(Recall: in general A− B means the set of all things in A but not in B.) We have:

Proposition B(ii)-2E. C∆D = (C ∪D)− (C ∩D).

Proof. (a) We show C∆D ⊆ (C ∪D)− (C ∩D): let x ∈ C∆D. By definition of C∆D, this
means x ∈ C −D or x ∈ D − C. If x ∈ C −D then x ∈ C, so x ∈ C ∪D, but x ∕∈ D, so
x ∕∈ C ∩D. Therefore x ∈ (C ∪D)− (C ∩D). On the other hand, if x ∈ D−C then x ∈ D,
so x ∈ C ∪D, but x ∕∈ C, so x ∕∈ C ∩D. Therefore x ∈ (C ∪D)− (C ∩D). So in either case
x ∈ (C ∪D)− (C ∩D). So C∆D ⊆ (C ∪D)− (C ∩D), as required.

(b) We show (C ∪D)− (C ∩D) ⊆ C∆D: let x ∈ (C ∪D)− (C ∩D). Then x ∈ C ∪D but
x ∕∈ C ∩D. Now since x ∈ C ∪D, we know x ∈ C or x ∈ D. If x ∈ C then, since x ∕∈ C ∩D,
we have x ∕∈ D, so x ∈ C − D, whence x ∈ C∆D (by definition of C∆D). If x ∈ D then,
since x ∕∈ C ∩D, we have x ∕∈ C, so x ∈ D − C, whence x ∈ C∆D (by definition of C∆D).
So in either case x ∈ C∆D. So (C ∪D)− (C ∩D) ⊆ C∆D, as required.

Since C∆D ⊆ (C ∪ D) − (C ∩ D) and (C ∪ D) − (C ∩ D) ⊆ C∆D, we have C∆D =
(C ∪D)− (C ∩D). □

(Suggestion: draw a Venn diagram to understand symmetric differences and Proposition
B(i)-5E.)

Exercise B(ii)-5. Let Z denote the set of integers. Also, for given integers b and r, let
r + bZ denotes the set of all integers of the form r + bq for some integer q. (For example,
3 + 7Z = {. . . , 3 + 7(−3), 3 + 7(−2), 3 + 7(−1), 3 + 7(0), 3 + 7(1), 3 + 7(2), 3 + 7(3), . . .} =
{. . . ,−18,−11,−4, 3, 10, 17, 24, . . .}.)
Using the strategy of Proposition B(ii)-2, prove that

Z = 3Z ∪ (1 + 3Z) ∪ (2 + 3Z),

where 3Z is shorthand for 0 + 3Z, and in general, A ∪ B ∪ C denotes the set of all objects
either in A, or B, or C.

Hint: use the division algorithm, referenced at the top of p. 4 above, and on p. 29 of T-BOP.

Exercise B(ii)-6. Is the union 3Z ∪ (1 + 3Z) ∪ (2 + 3Z) described in the previous problem
disjoint? That is, do any two of the sets 3Z, 1 + 3Z, and 2 + 3Z have any elements in
common? Hint: think about the uniqueness described in the division algorithm.

Exercise B(ii)-7. Using the strategy of Proposition B(ii)-2, prove that, for any sets X, Y ,
and Z,

X ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z).

7



Math 2001–004: Intro to Discrete Math Fall 2024

(It may help to draw a Venn diagram to help you understand what’s going on here. But a
Venn diagram does not suffice here for a proof.)

Part B(iii): ∀x ∈ X, Q(x); ∃x ∈ X : Q(x), and related results

If Q(x) is a statement regarding a generic element x of a set X, then the statement “∀x ∈
X, Q(x)” means “for all x ∈ X, Q(x) is true.” Thus the “∀,” called the universal quantifier,
means “for all.”

The statements “∀x ∈ X, Q(x),” “for any x ∈ X, Q(x) is true,” “given x ∈ X, Q(x) is true,”
and “if x ∈ X, then Q(x) is true” all mean the same thing. In particular, the last statement
is of the form P ⇒ Q. So, recalling part B(i) above, we have the following strategy for
proving “∀x ∈ X, Q(x):”

Proposition B(iii)-1. ∀x ∈ X, Q(x).

Proof. Assume x ∈ X. [Now do what you got to, to get to:] Therefore, Q(x).

So ∀x ∈ X, Q(x). □

For example:

Proposition B(iii)-1E. ∀p ∈ {prime numbers}− {3}, 3 divides p2 +2. [That is: if p is any
prime number not equal to 3, then 3 divides p2 + 2.]

Proof. Assume p is prime and not equal to 3. Then p is not divisible by 3 (a prime is only
divisible by itself and 1), so if we divide 3 into p, we geta quotient k and a nonzero remainder
r. Since r must be < 3, we have r = 1 or r = 2. That is, p = 3k + r for some integer k, and
r = 1 or r = 2.

But note, then, that

p2 + 2 = (3k + r)2 + 2 = 9k2 + 6kr + r2 + 2 = 3(3k2 + 2kr) + r2 + 2. (◦)

If r = 1 then r2 + 2 = 3; if r = 2 then r2 + 2 = 6; in either case r2 + 2 is a multiple of 3.
That is, in either case r2 + 2 = 3m for some m. So (◦) gives

p2 + 2 = 3(3k2 + 2kr +m),

which implies that p2 + 2 is a multiple of 3.

Therefore, ∀p ∈ {prime numbers}− {3}, 3 divides p2 + 2. □

Exercise B(iii)-1. Prove that, if m is an integer, then product m(m+1)(m+2) is divisible
by 6. In other words prove that, ∀m ∈ Z, 6|m(m+ 1)(m+ 2).

Exercise B(iii)-2. Prove that, ∀x, y ∈ R (recall that R denotes the set of real numbers),
we have

x2 + y2 ≥ 6x+ 4y − 15.

Hint: complete the squares. (Note: “∀x, y ∈ R” means “if x ∈ R and y ∈ R.”)
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We next consider the sentence “∃x ∈ X : Q(x), ” which means “for some x ∈ X, Q(x) is
true.” Thus the “∃,” called the existential quantifier, means “for some.”

The statements “∃x ∈ X : Q(x),” “there is an x ∈ X such that Q(x) is true,” and “there’s
at least one x ∈ X such that Q(x) is true” all mean the same thing. The most direct method
of proving a statement like ∃x ∈ X : Q(x) is by finding an x ∈ X such that Q(x) holds.
Such a proof is called constructive, and looks like this:

Proposition B(iii)-2. ∃x ∈ X : Q(x).

Proof. Let x = [some element of X you’ve found that such that Q(x) holds. Then show that
Q(x) holds, for this x, to conclude:] Then Q(x) holds.

So ∃x ∈ X : Q(x). □

Remark on constructive proofs: generally, you do not need to show the work that went into
finding the x that works. However, once you have produced this x, you do show that it works
(that is, it makes Q(x) true).

Proposition B(iii)-2E. ∃k ∈ {integers between 30 and 50} : k divides 576.

Proof. Let k = 48. Then 576 = 12k, so k divides 576.

So ∃k ∈ {numbers between 30 and 50} : k divides 576. □

(The “work” that goes into finding the number k appropriate for the above proposition
amounts simply to checking all numbers between 30 and 50 ’til one does the job. Again, in
the proof you don’t show this work; you just present the result, and show that it does do the
job.)

Exercise B(iii)-3. Prove that ∃p ∈ {prime numbers} such that such that p > 100.

Exercise B(iii)-4. Prove that ∃k ∈ Z such that k can be expressed as a sum of two squares
in two different ways. Hint: you don’t have to go too far; there’s a k < 100 that works.

Quantifiers can be combined in various ways; for example, we can form statements like “∀x ∈
X, ∃y ∈ Y : Q(x, y).” We’ll consider a particularly useful context for such a combination in
the next section. In the meantime, we note that great care should be taken with such
combinations. In particular, the order of combination matters, as the following exercise
attests.

Exercise B(iii)-5. (a) Prove that:

∀x ∈ R, ∃y ∈ R : x > y.

(b) Prove that the statement
∃y ∈ R : ∀x ∈ R, x > y

is false.
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Part B(iv): Quantifiers and limits

One area where quantifiers may be applied quite nicely is in the discussion of limits. Specif-
ically: let

x1, x2, x3, . . .

be a sequence of real numbers. Recall: to say

lim
n→∞

xn = L (∗)

is, intuitively, to say that xn gets closer and closer to L as n gets larger and larger. Or,
somewhat more precisely: (∗) means we can make xn as close as we want to L, by making n
large enough. Or, even more precisely: (∗) means we can make |xn−L| as small as we want,
by making n large enough. Or, still more precisely, it means we can make |xn − L| smaller
than any prescribed positive tolerance, call it ε, by making n large enough—say, larger than
some specified real number R.

In other (more mathematical) words, (∗) means: for any ε > 0, there exists an R ∈ R such
that, if n > R, then |xn − L| < ε.

So, in light of what we’ve discussed above concerning the phrases “for any,” “there exists,”
and “if P then Q,” we are ready for:

Definition B(iv)-1. We say
lim
n→∞

xn = L

if, ∀ε > 0, ∃R ∈ R such that n > R ⇒ |xn − L| < ε.

So that’s the definition. (It’s due to Cauchy, ca. 1827.) It does require some practice to get
one’s brain around this definition, to the point of being able to use it to prove things.

To this end, let’s begin with a template for a limit proof.

Proposition B(iv)-1.
lim
n→∞

xn = L.

Proof. Let ε > 0. [Now, perform some algebra “scratchwork” (which you won’t show as
part of your proof ) on the condition |xn − L| < ε, to determine how large n has to be to
make this condition true. Let’s say you find that |xn − L| < ε whenever n > R, where R
is some real number. Then n > R ⇒ |xn − L| < ε. Then the following is what you write.]
Let R =(whatever R works, according to your scratchwork). Then n > R ⇒ (here you do
algebra that’s essentially the reverse of what you did to find R, to show that) |xn − L| < ε.
So limn→∞ xn = L. □
Now let’s work a couple of examples, to gain familiarity with the relevant ideas.

Proposition B(iv)-1E.

lim
n→∞

1

n
= 0.
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Proof. Let ε > 0. [Here’s our scratch work: we want n large enough that |1/n − 0| < ε.
But |1/n− 0| = 1/n (since n is a positive integer). So we want 1/n < ε, or n > 1/ε. So we
choose R = 1/ε. Now this is what we write.] Let R = 1/ε. If n > R, then

󰀏󰀏󰀏󰀏
1

n
− 0

󰀏󰀏󰀏󰀏 =
1

n
<

1

R
=

1

1/ε
= ε.

So by Definition B(iv)-1,

lim
n→∞

1

n
= 0,

as required. □

Exercise B(iv)-1. Show that

lim
n→∞

1√
n
= 0.

Use only arguments involving ε and R, as in the proof of Proposition B(iv)-1E above. That
is, you’re not allowed to use limit laws like “the limit of the square roots is the square root
of the limits” or what have you.

Here’s another example.

Proposition B(iv)-1EE.

lim
n→∞

2n+ (−1)n

n+ 1
= 2.

Proof. Let ε > 0. [Scratchwork: We want n to be large enough that

󰀏󰀏󰀏󰀏
2n+ (−1)n

n+ 1
− 2

󰀏󰀏󰀏󰀏 < ε.

But note that
󰀏󰀏󰀏󰀏
2n+ (−1)n

n+ 1
− 2

󰀏󰀏󰀏󰀏 =
󰀏󰀏󰀏󰀏
2n+ (−1)n − 2(n+ 1)

n+ 1

󰀏󰀏󰀏󰀏 =
󰀏󰀏󰀏󰀏
(−1)n − 2

n+ 1

󰀏󰀏󰀏󰀏 ≤
1 + 2

n+ 1
=

3

n+ 1
<

3

n
.

(We used the triangle inequality on R, which says that

|x+ y| ≤ |x|+ |y| ∀x, y ∈ R, (△=)

to get |(−1)n − 2| ≤ |(−1)n| + | − 2| = 1 + 2 = 3.) If we can make 3/n < ε then we’ll be
done. Solving 3/n < ε for n gives n > 3/ε. OK, now here’s what we write.] Let ε > 0 be
given. Let R = 3/ε. If n > R, then

󰀏󰀏󰀏󰀏
2n+ (−1)n

n+ 1
− 2

󰀏󰀏󰀏󰀏 =
󰀏󰀏󰀏󰀏
2n+ (−1)n − 2(n+ 1)

n+ 1

󰀏󰀏󰀏󰀏 =
󰀏󰀏󰀏󰀏
(−1)n − 2

n+ 1

󰀏󰀏󰀏󰀏 ≤
1 + 2

n+ 1
=

3

n+ 1

<
3

n
<

3

R
=

3

3/ε
= ε.

11
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So by Definition B(iv)-1,

lim
n→∞

2n+ (−1)n

n+ 1
= 2,

as required. □

Exercise B(iv)-2. Show that

lim
n→∞

n2 + (−1)n n

3n2 + 1
=

1

3
.

The same rules apply as in Exercise B(iv)-1. HINT: Show that

󰀏󰀏󰀏󰀏
n2 + (−1)n n

3n2 + 1
− 1

3

󰀏󰀏󰀏󰀏 ≤
3n+ 1

3(3n2 + 1)
.

Since 1 ≤ n by assumption, the latter is ≤ 4n/(3(3n2 + 1)) < 4n/(3(3n2)) = 4/(9n). Now
proceed similarly to the proof of Proposition B(iv)-1EE.

Exercise B(iv)-3. Show that

lim
n→∞

4n3 + n+ sinn

7n3 + 3
=

4

7
.

The same rules apply as in Exercises B(iv)-1 and B(iv)-2.

We can prove most of the usual, familiar limit laws using Definition B(iv)-1 above. For
example:

Proposition B(iv)-1EEE.

lim
n→∞

(xn + yn) = lim
n→∞

xn + lim
n→∞

yn,

providing both limits on the right hand side exist.

Proof. Let ε > 0. Let’s write

lim
n→∞

xn = L and lim
n→∞

yn = M. (∗∗)

[Scratch work: we want to find R so that n > R ⇒ |xn + yn − (L +M)| < ε. But note, by
the triangle inequality (△=) on R,

|xn + yn − (L+M)| = |(xn − L) + (yn −M)| < |xn − L|+ |yn −M |. (†)

If we pick n large enough to make each of the terms |xn−L| and |yn−M | smaller than ε/2—
and we can do this, by Definition B(iv)-1 and (∗∗)—then we have the desired inequality.
OK, here’s what we write.] By (∗∗) and Definition B(iv)-1, we can choose R1, R2 ∈ R such

12
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that n > R1 ⇒ |xn − L| < ε/2 and n > R2 ⇒ |yn −M | < ε/2. Let R be the larger of R1

and R2. If n > R, then by (†),

|xn + yn − (L+M)| ≤ |xn − L|+ |yn −M | < ε/2 + ε/2 = ε.

So by Definition B(iv)-1,

lim
n→∞

(xn + yn) = L+M = lim
n→∞

xn + lim
n→∞

yn,

as required. □

Exercise B(iv)-4. Prove that, if
lim
n→∞

xn = L

(where L is a finite number) and C ∈ R, then

lim
n→∞

Cxn = C L.

The following limit law is a bit harder to prove. First we need a brief lemma.

Lemma B(iv)-1. For all real numbers x and y, we have

|x|− |y| ≤ |x+ y|.

Proof. Let x, y ∈ R. Then by the triangle inequality (△=) and some algebra, we have

|x| = |(x+ y)− y| ≤ |x+ y|+ |− y| = |x+ y|+ |y|.

Subtracting |y| from both sides gives |x|− |y| ≤ |x+ y|, as claimed. □
Now here is the limit law to which Lemma B(iv)-1 will be applied.

Proposition B(iv)-1EEEE.

lim
n→∞

xnyn =
󰀓
lim
n→∞

xn

󰀔󰀓
lim
n→∞

yn

󰀔
,

providing both limits on the right exist.

Proof. Let’s call the limits on the right L and M , as in (∗∗). Let ε > 0. [Scratch work:
we want ⇒ |xnyn − LM | < ε. The trick is as follows: write |xnyn − LM | = |xnyn − xnM +
xnM − LM | and note, by the triangle inequality (△=) on R, that

|xnyn − xnM + xnM − LM | ≤ |xnyn − xnM |+ |xnM − LM | = |xn||yn −M |+ |M ||xn − L|.

By Definition B(iv)-1, we can pick n large enough to make |xn − L| < ε/(2(|M | + 1)) and
|yn − M | < ε/(2(|L| + 1)). (It’s important to have an |M | + 1 and an |L| + 1 in the
denominators, rather than just an |M | and |L|, since M or L could conceivably be zero, and

13
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we want to avoid dividing by zero.) We can also, for n large enough, assure that |xn| < |L|+1
for the following reason: we are assuming that limn→∞ xn = L, so by Definition B(iv)-1 with
ε = 1 we have |xn −L| < 1 for n large enough; but |xn|− |L| ≤ |xn −L| by Lemma B(iv)-1,
so for n large enough, we have |xn|− |L| < 1, or |xn| < |L|+ 1.

Now it may not be clear why we are bounding the various quantities involved in the indicated
ways, but it will be once we write our proof. So here’s what we write.] By (∗∗) and Definition
B(iv)-1, we can choose an R1 such that n > R1 ⇒ |xn − L| < ε/(2(|M | + 1)), an R2 such
that n > R2 ⇒ |yn −M | < ε/(2(|L| + 1)), and R3 such that n > R3 ⇒ |xn| < |L| + 1. Let
N = max{R1, R2, R3}: then

n > R ⇒ n > R1 and n > R2 and n > R3

⇒ |xnyn − LM | = |xnyn − xnM + xnM − LM | ≤ |xnyn − xnM |+ |xnM − LM |

= |xn||yn −M |+ |M ||xn − L| < (|L|+ 1)
ε

2(|L|+ 1)
+ |M | ε

2(|M |+ 1)

<
ε

2
+

ε

2
= ε.

So by Definition B(iv)-1,

lim
n→∞

xnyn = LM =
󰀓
lim
n→∞

xn

󰀔󰀓
lim
n→∞

yn

󰀔
,

as required. □

Exercise B(iv)-5. Prove that, if
lim
n→∞

xn = L

and L > 0, then the xn’s are “eventually” positive, meaning there is an R ∈ R such that
n > R ⇒ xn > 0. Hint: let ε = L/2: by Definition B(iv)-1, there is an R ∈ R such that
n > R ⇒ |xn − L| < L/2. What does this tell you about xn itself ?

Exercise B(iv)-6. Prove that

lim
n→∞

√
xn =

󰁴
lim
n→∞

xn,

providing the limit on the right exists and is > 0. Hints: first you need an R1 such that
n > R1 ⇒ xn > 0 (use Exercise B(iv)-5), so that you can even consider the square roots on
the left. Then, given ε > 0, you need an R2 such that n > R2 ⇒ |√xn −

√
L| < ε, where

L = limn→∞ xn. To achieve the latter, use the fact that

√
a−

√
b =

a− b
√
a+

√
b

for a, b > 0. Now let R = max{R1, R2}, and go for it.

Remark. Exercise B(iv)-6 exemplifies a more general limit law, namely: if limn→∞ xn = L
and f is continuous at x = L, then

lim
n→∞

f(xn) = f(L).

14
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Indeed, this is essentially the (or at least a) definition of continuity.

Next, we have the following HUGELY powerful limit law.

Proposition B(iv)-1EEEEE: The Squeeze Law. If

xn ≤ yn ≤ zn (†)

for all n sufficiently large (meaning for all n greater than or equal to some fixed number R1),
and

lim
n→∞

xn = L = lim
n→∞

zn,

then
lim
n→∞

yn = L

as well.

Proof. let R1 be large enough that (†) holds for n > R1 (such an R1 exists by assumption).
Let ε > 0. By Definition B(iv)-1 there is an R2 such that n > R2 ⇒ |xn − L| < ε, and an
R3 such that n > R3 ⇒ |zn − L| < ε. But note |xn − L| < ε ⇒ −ε < xn − L ⇒ L− ε < xn;
similarly |zn − L| < ε ⇒ zn − L < ε ⇒ zn < L+ ε. let R = max{R1, R2, R3}. Then by (†),

n > R ⇒ n > R1 and n > R2 and n > R3 ⇒ L− ε < xn ≤ yn ≤ zn < L+ ε.

So n > R ⇒ L − ε < yn < L + ε; the latter is the same as |yn − L| < ε. So by Definition
B(iv)-1,

lim
n→∞

yn = L,

as required. □

Exercise B(iv)-7. Prove that

lim
n→∞

xn = L ⇔ lim
n→∞

|xn − L| = 0.

(Deduce this directy, but carefully, from Definition B(iv)-1.)

The result of Exercise B(iv)-7 is quite useful; for example, we use it in the following:

Proposition B(iv)-1EEE revisited.

lim
n→∞

(xn + yn) = lim
n→∞

xn + lim
n→∞

yn,

providing both limits on the right hand side exist.

Proof. We’ve already proved this, but this time, we do so using the squeeze law instead of
ε’s and R’s. Here’s how: For all n ≥ 1 we have, by the triangle inequality (△=),

0 ≤ |xn + yn − (L+M)| ≤ |xn − L|+ |yn −M |. (□)

15
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By assumption and by Exercise B(iv)-7, the right side of (□) goes to zero as n → ∞; certainly
the left side does too. So by the squeeze law, |xn + yn − (L + M)| → 0 as n → ∞; so by
Exercise B(iv)-7,

lim
n→∞

(xn + yn) = L+M,

as required. □

The point is that, if one assumes the squeeze law, then one often does not need arguments
that directly make use of ε’s and R’s.

Exercise B(iv)-8. Using the squeeze law instead of ε’s and R’s, prove that

lim
n→∞

3n+ cosn

2n
=

3

2
.

Hint: get a common denominator to show that

0 ≤
󰀏󰀏󰀏󰀏
3n+ cosn

2n+ 7
− 3

2

󰀏󰀏󰀏󰀏 ≤
3

2n
.

Now use the squeeze law, Exercise B(iv)-7, Proposition B(iv)-1E, and Exercise B(iv)-4.

Exercise B(iv)-9. Using the squeeze law instead of ε’s and R’s, re-prove the result of
Exercise B(iv)-4.

There are MANY MANY other “ε-R” proofs that can be done without the ε’s and the R’s, if
one has the squeeze law at one’s disposal. Of course the proof of the squeeze law does require
ε’s and R’s, so the power of the squeeze law does not diminish, but in fact illuminates, the
value of ε-R proofs.

Part B(v): Mathematical Induction

Suppose you want to show that a certain statement is true for any positive integer n. For
example you might want to prove that, given any positive integer n,

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
,

i.e. the sum of the first n positive integers is n(n + 1)/2. Or you might want to show that,
for any positive integer n, 󰁝 1

0

(− ln t)n dt = n!.

These seem like pretty hard things to prove, since there are infinitely many positive integers
and you only have a finite amount of time and patience.

Well, maybe you don’t actually have to look at every integer n. It’s sort of like dominoes: sup-
pose you have an infinite line of dominoes, numbered consecutively as A(1), A(2), A(3), . . .,
all standing on end. Also suppose:
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(a) The first domino A(1) is knocked over, and

(b) The dominoes are so arranged that each one, upon falling, will topple the next. That
is, whenever the kth domino A(k) falls, so will the (k + 1)st domino A(k + 1).

It’s clear, at least intuitively, that from (a) and (b) you can conclude that all dominoes will
eventually fall; that is, that the nth domino A(n) will topple for any integer n. The principle
of mathematical induction works in just the same way, except that instead of dominoes one
has mathematical assertions. For example, A(n) could be the assertion “1+2+3+ · · ·+n =

n(n+ 1)/2,” or “
󰁕 1

0
(− ln t)n dt = n!.” We have:

Principle B(v)-1: the principle of mathematical induction. Let A(n) be an assertion
regarding a positive integer n. To prove that A(n) is true for all n, it is enough to show:

• (Step 1) A(1) is true,

• (Step 2) For any positive integer k, A(k) ⇒ A(k + 1).

You don’t need dominoes to understand the principle mathematical induction: think of it
this way. Suppose you want to prove a statement A(n) regarding an arbitrary positive integer
n. If you can ascertain A(1), and that A(k) gives you A(k + 1) for each positive integer k,
then you can conceptually leapfrog from A(1) to A(2), and then from A(2) to A(3), and then
from A(3) to A(4), and so on until you conclude A(n). Step 1 of mathematical induction
gives you your starting point; Step 2 allows you to make all of the jumps (in your head, you
make them all at once).

So we can rewrite Principle B(v)-1, as a model proof by mathematical induction:

Proposition B(v)-1. For any positive integer n, A(n) is true.

Proof.

Step 1. [Prove A(1)]. So A(1) is true.

Step 2. Assume A(k). [Then do what you need to do, to show that]: So A(k + 1) follows.

Therefore, by the principle of mathematical induction, A(n) is true for all positive integers
n. □

Step 1 is often called the “anchor” of a proof by mathematical induction. Step 2 is called the
“inductive step;” the hypothesis A(k) is called the “induction hypothesis.” And remember:
for Step 2 you need not prove that A(k) is true; only that whenever A(k) is true, so is
A(k + 1), or in other words, that A(k) ⇒ A(k + 1).

For example, let us use mathematical induction to prove:

Proposition B(v)-1E. The sum of the first n positive integers is n(n+ 1)/2.

Proof. We let A(n) be the statement

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
.
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Step 1. Is A(1) is true? Yes, since 1 = 1(1 + 1)/2.

Step 2. We need to show that A(k) implies A(k + 1) for all positive integers k. The
statement A(k) is

1 + 2 + 3 + · · ·+ k =
k(k + 1)

2
.

Assume that this is true. We need to show that A(k + 1) follows; in other words that

1 + 2 + 3 + · · ·+ (k + 1) =
(k + 1)((k + 1) + 1)

2
=

(k + 1)(k + 2)

2
.

Let’s examine the left-hand side of A(k + 1). We have

1 + 2 + 3 + · · ·+ (k + 1) = (1 + 2 + 3 + · · ·+ k) + (k + 1)

=
k(k + 1)

2
+ (k + 1) =

k(k + 1) + 2(k + 1)

2
=

(k + 1)(k + 2)

2
,

(1)

the second equality following from the induction hypothesis. But equation (1) is just the
assertion A(k + 1).

We have shown that A(1) is true, and that A(k) implies A(k + 1) for all positive integers k.
By the principle of mathematical induction, we have proved that

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

for all positive integers n. □

Note that the key step in the above was equation (1), where we used A(k) to deduce A(k+1).
In particular, in equation (1), we: first wrote down the left-hand side of A(k + 1), then did
some algebra to express this in terms of the left-hand side of A(k), then used the induction
hypothesis to rewrite this in terms of the right-hand side of A(k), then did some algebra to
express this in terms of the right-hand side of A(k + 1). This is often the kind of strategy
that will work in a proof by mathematical induction.

Exercise B(v)-1. Use mathematical induction to prove that, for any positive integer n,

12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

Exercise B(v)-2. Use mathematical induction to prove that, for any positive integer n,

1 + 3 + 5 + 7 + · · ·+ 2n− 1 = n2.

That is: the sum of the first n consecutive odd positive integers equals n2.
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Exercise B(v)-3. Use mathematical induction to prove that, for any positive integer n,

d

dx
xn = nxn−1

(pretend you didn’t already know this, although it’s OK to assume it’s true for n = 1). Hint:
for the inductive step, use the product rule.

Exercise B(v)-4. [For students who have had second semester Calculus.] Use mathematical
induction to prove that, for any positive integer n,

󰁝 1

0

(− ln x)n dx = n!.

Hints: (a) note that this is an improper integral (since ln x → −∞ as x → 0+); (b) use
integration by parts.

Exercise B(v)-5. Use mathematical induction to prove that, for any positive integer n,
the product of any n integers of the form 4m+1 (where m is an integer) is itself of the form
4m+ 1.

Exercise B(v)-6. Let A(n) be the statement

1 + 2 + 3 + · · ·+ n =
(2n+ 1)2

8
.

Prove that if A(k) is true for any positive integer k, then so is A(k+ 1). Is A(n) true for all
positive integers n? Explain your answer.

Remark. The principle of mathematical induction, while entirely plausible and perhaps even
“obvious,” is in fact dependent on the well-ordering principle, a deep fact that we have
already mentioned in connection with the division algorithm. See p. 4 above, and Axiom
3.1.1, p. 105, of our course text.

Part B(vi): More on induction: Fibonacci numbers

Exercise B(vi)-1. Count the number of clockwise (yellow) and counterclockwise (purple)
spirals in the coneflower below.
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Clockwise spirals: Counterclockwise spirals:

What’s the significance of Exercise B(vi)-1? To answer, we define the Fibonacci sequence
Fn, which looks like this:

1, 1, 2, 3, 5, 8, 13, 21, . . . .

The rule for finding terms in this sequence is: the first term is 1; the second term is 1; to get
any other term, add together the previous two terms. That is: F1 = F2 = 1; Fn+2 = Fn+1+Fn

for n ≥ 1.

Exercise B(vi)-2. Write down the nine Fibonacci numbers (that is, the nine terms in the
Fibonacci sequence) that come right after the last Fibonacci number listed above.
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FACT: Fibonacci numbers are EVERYWHERE. See, for example, Exercise B(vi)-1 above.
Similarly, count clockwise and counterclockwise spirals on a pine cone: you’ll get consecutive
Fibonacci numbers! Really!!

Similar things happen with sunflowers, pineapples, broccoli florets, etc. See

https://en.wikipedia.org/wiki/Fibonacci_number

Fibonacci numbers satisfy many curious relations. Here’s one.

Exercise B(vi)-3. Using the principle of mathematical induction, prove that

Fn+3Fn − Fn+1Fn+2 = (−1)n+1.

Hint: If the above statement is A(n), then A(k + 1) is the statement

Fk+4Fk+1 − Fk+2Fk+3 = (−1)k+2.

To see how this can be obtained from A(k), rewrite Fk+4 and Fk+2, in the above statement of
A(k+1), using the fact that a given Fibonacci number equals the sum of its two predecessors.

Particularly interesting things happen when we examine ratios of successive Fibonacci num-
bers. Let’s do this.

Exercise B(vi)-4. Define a sequence Rn by

Rn =
Fn+1

Fn

for n ≥ 1 (Fn denotes the nth Fibonacci number, as above). So the sequence Rn starts like
this:

1

1
,
2

1
,
3

2
,
5

3
,
8

5
,
13

8
, . . . .
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Write down the next nine Rn’s as fractions. Then write these nine terms as decimal numbers,
with at least 4 places after the decimal point. Do the Rn’s appear to be converging? That
is, do they appear to have a limit? If so, what (approximately) does this limit appear to be
(to as many decimal places as you care to speculate)?

The number to which your above Rn’s converge is, actually, a number that shows up in
various other places too.

In the next problem, we investigate one of those places.

Exercise B(vi)-5. Find a half-dozen single-switch switchplates, meaning this kind of thing:

around your home, at school, etc. (Avoid switchplates that have extra stuff like electrical
outlets, or that have multiple switches, or non-rectangular shapes, etc. Also, try not to take
all of your switchplates from the same home, or classroom, etc.) Measure the height and
width of each switchplate in millimeters. Then compute the Proportion of the switchplate,
defined to be the ratio of the height (longer side) to width (shorter side). Do this for each of
your six switchplates, and supply supply the relevant info below (if your computed answers
have more than four digits after the decimal, it suffices to write down only the first four of
these digits):

Height: Width: Proportion:

Height: Width: Proportion:

Height: Width: Proportion:

Height: Width: Proportion:

Height: Width: Proportion:

Height: Width: Proportion:

The average (mean) of the above six Proportions is:

Exercise B(vi)-6. The number (1 +
√
5)/2, often called the golden mean or the golden

ratio, and often denoted by Φ, is special. It shows up in many real-life, and mathematical,
situations. What are some such situations? To answer, plug this number into your calculator,
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and evaluate as a decimal to a few decimal places. How does what you get compare to some
of the numbers above? See especially exercises B(vii)-3 and B(vii)-4.

Remark. The golden ratio Φ, or numbers close to it, also show up when you divide your
height by the height of your belly button; the height of your face (chin to crown) by the width
of your face; etc. (Try it!!) There’s an awful lot of debate as to whether these phenomena
are deeply significant or not. (Perhaps the debate itself makes them significant.)

Let’s return to the study of Fibonacci numbers per se. We note that the formula Fn+2 =
Fn+1 + Fn for these numbers is recursive; it expresses a given Fibonacci number in terms of
previous ones. Recursive formulas, on their own, can be a bit of a pain, because you can
only use them to figure out a given term if you have already worked out all terms coming
before that given one. (To compute Fn+2 you only need, on the surface, to know Fn and
Fn+1, but of course, to know these latter two quantities you need to have computed Fn−1

and Fn−2, and so on down the line.)

There are various methods that can sometimes be employed to turn recursive formulas into
closed formulas. A closed formula for a sequence is one where each term an is expressed
directly in terms of the integer n, and not in terms of an−1, an−2, etc.

As it turns out, there is a convenient closed formula for Fibonacci numbers. We won’t discuss
the derivation of this formula, but we will state the formula, and prove that the formula is
correct.

Proposition B(vi)-1. If Fn denotes the nth Fibonacci number, then

Fn =
1√
5

󰀗󰀕
1 +

√
5

2

󰀖n

−
󰀕
1−

√
5

2

󰀖n󰀘
.

Proving this proposition is quite straightforward, if one has the following generalization of
the principle of mathematical induction.

Principle B(vi)-1: the principle of “double whammy” mathematical induction,
or DWMI. Let A(n) be an assertion regarding a positive integer n. To prove that A(n) is
true for all n, it is enough to show:

• (Step 1) A(1) is true,

• (Step 2) A(2) is true,

• (Step 3) Whenever A(k) and A(k + 1) are true for a positive integer k, then so is
A(k + 2).

Exercise B(vi)-7. Come up with an interesting, convincing ANALOGY for DWMI. Some-
thing like our domino analogy for the original principle of mathematical induction, but that
better suits the situation at hand. be creative!!
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Exercise B(vi)-8. Use DWMI to prove Proposition B(vi)-1. Hint: it might be useful to
note that 󰀕

1±
√
5

2

󰀖2

=
1± 2

√
5 +

√
5
2

4
=

6± 2
√
5

4
=

3±
√
5

2
.

Exercise B(vi)-9. Let Rn be the ratio defined in Exercise B(vi)-4. Prove that

lim
n→∞

Rn = Φ

where, again, Φ denotes the golden ratio, Φ = 1+
√
5

2
. (You don’t need to use fancy “ε-R”

limit arguments, like those in Section B(iv) above, to do this. Just use standard calculus
techniques.) Does this confirm the observations you made based on numerical calculations
you did in Exercise B(vi)-6?

Part B(vii): Proof by contradiction

We’ve demonstrated various different ways of proving various types of statements. Note that
any given statement may be amenable to more than one strategy of proof.

We now introduce one more proof strategy, namely, the strategy of proof by contradiction.

Here’s the big idea behind this strategy: suppose you want to prove a statement T . If the
assumption of ∼ T leads to an absurdity, meaning something that is logically impossible,
then the assumption of ∼T must have been incorrect, whereby ∼(∼T ), which is to say T ,
must follow.

The absurdity that one often shoots for in a proof by contradiction is one of the form “V and
∼V ,” where V is any statement whatsoever!! Indeed a statement, regardless of its nature,
cannot be true at the same time as its negation is, so “V and ∼V ” is always an absurdity.

In sum, the general idea is:

Proposition B(vii)-1. T .

Proof. Assume ∼T . [Then do some stuff to conclude:] Therefore, V .

[Then do some other stuff to conclude:] Therefore, ∼V .

Thus, V and ∼V . Contradiction. Therefore, T . □

Sometimes, either V or ∼V will be obvious. For example:

Proposition B(vii)-1E. There are no integers a and b with 6a+ 28b = 1.

Proof. Let T be the statement of this proposition. We assume ∼ T to be true; that is,
we assume that there do exist integers a and b with 6a + 28b = 1. Now 2 divides 6 and 2
divides 28, so by Exercise B(i)-3 above, 2 divides 6a+28b for any integers a and b, so by the
assumption ∼T , 2 divides 1, meaning 1 is even.

But 1 is odd. Contradiction. So our assumption ∼T must be false, so T is true. That is:
there are no integers a and b with 6a+ 28b = 1. □
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Exercise B(vii)-1. Use proof by contradiction to show that there are no integers a and b
with 6a+ 21b = 1.

Exercise B(vii)-2. Use proof by contradiction to show that there are no integers a and b
such that a and b are both odd, and a2 + b2 is a perfect square. Hint: assume the statement
to be proved is false, so that a2 + b2 = c2 for some integers a, b, and c, with a and b both
odd. Conclude that c2−2 is divisible by 4. Then derive a contradiction using Exercise B(i)-2
above (and the division algorithm).

As a less simple example, we have:

Proposition B(vii)-1EE. There are infinitely many prime numbers.

Proof. Assume it is not the case that there are infinitely many prime numbers: that is,
assume there are finitely many, say K, of them. Denote them by p1, p2, . . . , pK .

Put M = p1p2 · · · pK + 1, and let p be a prime number that divides M . (Every integer
greater than 1 has a prime divisor.) Since p equals one of the primes p1, p2, . . . , pK (as these
are all of the primes), p certainly divides the product of all these primes: so p also divides
N = p1p2 · · · pK . But any integer dividing two integers divides their difference, so p divides
M −N .

On the other hand, by definition of M −N , we have

M −N = (p1p2 · · · pK + 1)− p1p2 · · · pK = 1.

But 1 is not divisible by any prime, so p cannot divide M −N .

So p|(M −N) and p∕ |(M −N). Contradiction. So there are infinitely many prime numbers.
□

Exercise B(vii)-3. Prove that there are infinitely many positive prime numbers of the form
4ℓ+3 (for ℓ an integer). Hint: Assume this is not the case. That is, assume there are finitely
many, say K, positive prime numbers of the form 4ℓ+3. Denote them by p1, p2, . . . , pK , and
let S = {1, p1, p2, . . . , pK}. Now put M = 4p1p2 · · · pK−1. Note that M is of the form 4j+3,
for j an integer (why?) Now proceed in a manner similar to that of Proposition B(vii)-1EE
above. At some point, you may want to use the result of Exercise B(v)-5.

Remark. Suppose V is some statement such that V ⇒∼V and ∼V ⇒ V . Well, note that
either V or ∼V must be true. In the first case we can deduce ∼V , and in the second we can
deduce V . In either case, we find V and ∼V are true.

IN OTHER WORDS: one way of arriving at the statement “V ⇒∼V and ∼V ⇒ V ” used
in the proof of Proposition B(vii)-1 is to come up with some statement V such that V ⇒∼V
and ∼V ⇒ V . The corresponding proof by contradiction will then look like this:

Proposition B(vii)-2. T .

Proof. Assume ∼T . Assume V . [Then do some stuff to conclude:] Therefore, ∼V .

Assume ∼V . [Then do some stuff to conclude:] Therefore, V .
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In either case (V or ∼V ), we have V and ∼V . Contradiction. Therefore, T . □

For example, we have:

Proposition B(vii)-2E. The square of any real number is non-negative (that is, ≥ 0).

Proof. Let T be the statement of the proposition. Assume ∼T . That is, assume there is
some real number b with

b2 < 0. (1)

To derive a contradiction to ∼T , we’re going to consider the statement V : b > 0. Note that
∼V is the statement b ≤ 0. We’ll show that, if we assume ∼T , then V ⇒∼V and ∼V ⇒ V .
This will tell us, as described above, that the assumption ∼T must have been false.

So assume V : b > 0. Then, since multiplying both sides of an inequality by a positive
number preserves the direction of the inequality, we can multiply both sides of equation (1)
by b−1 to get b < 0, which certainly implies b ≤ 0. So ∼V is true.

Now assume ∼V : b ≤ 0. Of course b can’t be zero because of equation (1) (and the fact that
02 = 0), so b < 0. Then, since multiplying both sides of an inequality by a negative number
reverses the direction of the inequality, we can multiply both sides of equation (1) by b−1 to
get b > 0. So V is true.

In either case (b > 0 or b ≤ 0), we have b > 0 and b ≤ 0. Contradiction. So the square of
any real number is non-negative. □

We’re not claiming that the contradiction method gives the easiest proof of Proposition
B(vii)-2E. But it does give a proof, and one that illustrates the ideas behind Proposition
B(vii)-2.

Our next exercise provides a perhaps meatier illustration and application of these ideas, and
is enough to make your head spin. (If your head is spinning already, this exercise is enough
to start it spinning in the opposite direction, simultaneously.)

To present this exercise, we recall a couple of mathematical ideas: first, for any sets X and
Y (finite or not), we say X and Y are equivalent if there is a bijection (a one-to-one, onto
function) from X to Y . (Equivalent sets are said to have the same cardinality. Very roughly,
cardinality can be understood as a measure of the size of a set.)

Next: for any set X, the power set S(X) is defined to be the set of all subsets of X.

We have:

Exercise B(vii)-4. Fill in the blanks below to prove the following proposition: no set is
equivalent to its power set.

Proof. We want to prove T : no set is equivalent to its power set. So assume ∼ ,
that is, suppose some set, call it X, is equivalent to its power set S(X). This means there
is a one-to-one, onto function f from X to .

By definition of f we know that, for each element x of X, f(x) belongs to S(X), so f(x) is
a of X. This subset might contain the element x, or it might not. Let’s consider
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the cases where it doesn’t. Specifically, let’s consider the set B of all elements of X such
that f(x) does not contain x. That is, let

B = {x ∈ X : ∕∈ f(x)}. (2)

Since B is a subset of , we have B ∈ S(X), and therefore, since f takes X onto
S(X), there is some y ∈ X with

f(y) = B. (3)

Consider the statement V : y ∈ B. We are going to show that, under the assumption
∼ T , we have V ⇒∼ V and ∼ V ⇒ V . Then, as in Proposition B(vii)-2, we will have a

to the statement ∼T , and thus we will be able to conclude the statement
, thereby proving our proposition.

So assume y ∈ B. By the definition (2) of B, this means y ∕∈ f(y). But again, by equation
(3), we have f(y) = . So y ∕∈ B.

Now assume y ∕∈ B. By the definition (2) of B, this means y ∈ . But again, by
equation (3), we have f(y) = B. So y ∈ B.

In either case (y ∈ B or ), we have and y ∕∈ B.
Contradiction. Therefore, no set is equivalent to its . □
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