Math 2001-004: Intro to Discrete Math SOLUTIONS Fall 2024

Notes on the RSA Algorithm and HW #10

These notes concern the “RSA,” or Rivest-Shamir-Adelman, algorithm, which is a method for
encoding and decoding messages using some number theory ideas.

The Exercises at the ends of Parts A, B, and C of these Notes constitute HW #10. Anything after
the Exercises for Part C can be ignored for the purposes of HW #10, but will be very relevant to
subsequent assignments.

Throughout, by “prime,” or “prime number,” we will mean a positive integer p whose only positive
integer factors are 1 and p.

The RSA algorithm is based upon the simple idea that, while multiplying together two large
primes is relatively easy, factoring such a product is much harder.

More specifically: given a pair of large primes p and ¢, a decent computer can, in general, calculate
m = pq quite easily, even if p and ¢ have hundreds of digits. But given only the product m of two
such prime numbers, it’s generally not so easy, even with lots of computing power, to figure out of
which two primes m is a product (even with the advance knowledge that m is, in fact, a product

of some pair of primes).

For example, Mathematica 13.3.1.0, running on an M1 iMac, took 0.000012 seconds of CPU time
to multiply together the primes

p =28,012,569,795,147,037,305,920,963,277,749,628,914,662,527,590,314,892,381,540,899,557,658,
727,561,627,073,596,629,516,007,733,350,970,901,196,381,503,333,712,077,626,705,499,954,515,
577,260,792,348,632,533,889,368,689,260,551

and

q =409,979,012,803,156,684,026,992,824,311,225,162,850,617,662,647, 990,082,269,707,895,322,401,
233,158,338,554,223,937,364,652,604,454,924,195,546,130,462,715,574,033,228,042,504,577,902,
809,413,850,720,086,027,157,221,973,957,611,016,318,502,032,623,823.

(Both p and ¢ are, in fact, prime.) It’s been working on factoring m = pq since approximately
10 AM on Tuesday, November 12, and is not likely to succeed. You’ll be notified if it does. (It
won’t.)

Here is how RSA works.

Part A: Encoding. We start with a message; we’ll assume, for the sake of simplicity, that the
message consists only of upper-case English letters A, B, ..., Z. We encode our message as follows.

1. First, we convert the message to a natural number n. To do so, we’ll use this “numerization
key:”
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For example, the message “HI” would become the integer n = 1819.

Remark: A more complex message might involve digits, lower-case letters, punctuation, spaces,
etc. We could numerize those symbols as well; there are plenty of two-digit numbers left to
numerize symbols with. But to keep things simple, we’ll assume, again, that we're working only
with the symbols A through Z.

Also, the numerization code is easily cracked; it should not be considered a fundamental part of
the RSA encryption scheme. Rather, it’s just a simple way of putting everything into the form of
an integer, so that we may perform the “integer arithmetic” to be described below.

2. Next, we raise the natural number n to another natural number k. For example, if n = 1819
as above, and we choose k = 17, then

n* = 18197 = 26,130,991,223,692,189,568,654,731,688,484,952,572,018,097,043,964,584,557.

3. Next, we choose another natural number m, and divide m into n*, yielding a quotient ¢ and a
remainder r, where 0 < r < m. That is, we write

nf=m-q+r (0 <r<m). (1)

By the division algorithm, the numbers ¢ and r here are uniquely determined.

For example, if n and k are as above and we choose m = 8927, then one can compute that

n* = 18197
= 8927 - 2,927,186,201,825,046,457,862,745,792,369,771,767,897,176,772,035,911 4 7042, (2)

so our remainder r, in this case, is r = 7042.

4. The encoded message, then, is the remainder r. So again, in the above example, the encoded
version of the original message “HI” (or its “numerized” alias 1819) is 7042.

We used a computer to get the equation (??). For smallish numbers, even a pocket calculator will
work: see the Exercises at the end of this section.

In real-life implementation of RSA, the numbers n, k, and m will typically be much bigger, and
therefore the calculations required to find r will be unmanageable on a computer, even a very
powerful one, without some added “tricks.”

To move towards an understanding of such tricks, note that equation (?7) above tells us that

181917 — 7042 = 8927 - 2,927,186,201,825,046,457,862,745,792,369,771,767,897,176,772,035,911,

which in turn tells us that
8927|(1819'7 — 7042). (3)

More generally, equation (??) above tells us that

nk—r:m-q,

2
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which in turn tells us that

m|(n* —r).

The moral of the story is that we should be studying phenomena of the form m|(a —b). We do so
in the next section.

Exercises for Part A. You'll need a calculator for these exercises.

1. (a) Numerize the single-letter message “L,” using the numerization key above. Call your
numerization n: n = 22 :

(b) Compute n*, with k = 5. Just plug n* into your calculator, and write down the number
you get. Answer: n* = 5,153,632

(c) Let m = 577. Find natural numbers q and r, with 0 < r < m, such that n* =m - q+r.
Hint: plug n*/m into your calculator. Write your answer in decimal form:

nk/m = 8931.771231

Your answer should have some stuff to the left of the decimal, and some stuff to the right:

that is, your answer should look like q.y, where ¢ and y are natural numbers. Then ¢ s

your quotient ¢. To find your remainder r, subtract m - ¢ from n*.

Write your answer here:

n* =577 - 8931 + 445

2. Repeat problem 1 with the message “A,” the exponent k = 7, and the divisor m = 223:

n = 11 nk = 19,487,171 n*/m = 87.386.41704

n* = 223. 87,386 + 93 .

3. Repeat problem 1 with the message “ME,” the exponent k = 2, and the divisor m = 1137:

n= 2,315 nk = 5,359,225 nk/m = 4,713.478452

n® = 1137 - 4,713 + 544 .

Part B: Congruences. As noted near the end of Part A, it will be useful to consider how to
treat situations where m|(a — b), for integers a,b,m. To this end, we begin with:

Y

Definition 1. Let a,b,m € Z. We say “a is congruent to b mod m,” and write

a =0b (mod m),

3
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if m|(a —b).

For example:

31 =1 (mod 10) (since 31 —1=10-3, so 10[(31 — 1));
3° = 3 (mod 24) (since 3° — 5 = 240 = 24 - 10, so 24/(3° — 5));
132617 = 617 (mod 132) (since 132617 — 617 = 132000 = 132 - 1,000);
—24 = 48 (mod 9) (since —24 — 48 =72 =9 10);
k=1 (mod 2) if k is odd, since then k — 1 is divisible by 2;
1819'7 = 7042 (mod 8927) (by equation (??) above);
732597 = 1 (mod 65) (we'll see why in Part D below);

and so on.

In general, a relation of the form a = b (mod m) is called a congruence. In such a congruence,
we call m the modulus. And when manipulating congruences, we say that we are doing modular
arithmetic.

In the next section, we’ll need to do a fair amount of modular arithmetic. The following proposition
will allow us to do so.

Proposition 1.

(a) Let a,b,c,m € Z. Then

a=b(modm) and b=c (modm)=a=c (modm).

(b) Let a,b,c,d,m € Z. Suppose a = b (mod m) and ¢ = d (mod m). Then:

(i) a+c=0b+d (mod m);
(i) a—c=0b—d (mod m);
(ili) ac = bd (mod m).

Proof.

(a) Let a,b,c,m € Z, and suppose that a = b (mod m) and b = ¢ (mod m). Then by definition
of congruence, m|(a — b) and m|(b — ¢). But then m divides the sum (a — b) + (b — ¢); that
is, m|(a — ¢). So a = ¢ (mod m).

(b) (Part (b)(i) only; for the rest, see the Part B Exercises below.) Assume a,b,c,d,m € Z,
a = b (mod m), and ¢ = d (mod m). Then by definition of congruence, m|(a — b) and
ml|(c — d). So m|((a —b) + (¢ — d)) or, rearranging terms, m|((a + ¢) — (b+ d)). But then,
by definition of congruence, a + ¢ = b+ d (mod m). d
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Remark. In this proof, we’ve used the results Exercise B(i)-3 in S-POP. You may use these results
in the Exercises below. You don’t need to cite that S-POP Exercise directly, as long as you use it

properly.
Example 1. We can compute that 46 = —6 (mod 13) and 63 = —2 (mod 13). By part (b)(i) of
the above proposition, we can add these two congruences together to get

109 = —8 (mod 13),

which we can check by noting that 109 — (—8) = 117 = 13- 9.

Example 2. Suppose we want to compute the remainder of 11* (mod 57), by which we mean the
remainder of 11* after division by 57. We first note that 112 = 121, and we compute easily that
121 =57-2+ 7,80 112 = 7 (mod 57). But by part (iii) of the above proposition, we can multiply
this congruence by itself, to get

11?112 = 7- 7 (mod 57),

or
11* = 49 (mod 57).

This last identity tells us that 11* = 57 - ¢ + 49 for some integer ¢. And since 0 < 49 < 57, we see
that 49 must be the remainder of 11* (mod 57).

This method is, arguably, easier than actually trying to divide 57 into 11* directly.

Example 3. What is the remainder of 11% (mod 57)? Well, by Example 2 directly above,
11* = 49 (mod 57), so by the same kind of argument as was used in that example,

11*-11* = 49 - 49 (mod 57),

meaning
11® = 2401 (mod 57).

Now 2401 is larger than 57, so 2401 can’t be a remainder after division by 57. But we can easily
divide 57 into 2401: we compute that 2401 = 57 -42 + 7, so

2401 = 7 (mod 57).

By part (a) of Proposition 1 above, we can string together the above two congruences 11% =
2401 (mod 57) and 2401 = 7 (mod 57) to get

11® = 7 (mod 57).

Since 7 is less than 57, 7 is our remainder (mod 57).
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Exercises for Part B.

1. Use your answers to the Exercises for Part A, above, to fill in each of the following blanks:

(a) 22°= 445 (mod 577).
(b) 117 = 93 (mod 223).
(¢) 23152= 544 (mod 1137).

2. Use the methods and results of Examples 2 and 3 in Part B above to compute the remainder
of 11'% (mod 57).

In Example 3 we computed that 11% = 7 (mod 57). But then 1116 = (118)2 = 77 = 49 (mod 57).

Hint for part (b)(ii): m|(a — b) and m|(c — d), so m|((a — b) — (¢ — d)).
(

Hint for part (b)(iii): m|(a — b) and m|(c — d), so m|(c(a — b) + b(c — d)).

Proof of part (b)(ii): Suppose a,b,¢,d € Z, a = b (mod m), and ¢ = d (mod m). Then, by
definition of “(mod m),” m|(a — b) and m|(c — d). But then m divides the difference of (a — b)
and (c — d); that is, m|((a — b) — (¢ — d)). Rearranging terms, we see that this is the same as
m|((a —¢) — (b—d)). But then, by definition of “(mod m),” we see that a — ¢ = b — d (mod m),
as required.

Proof of part (b)(iii): Suppose a,b,c,d € Z, a = b (mod m), and ¢ = d (mod m). Then, by
definition of “(mod m),” m|(a —b) and m|(c — d). But then m divides ¢(a — b) and b(c — d), so m
divides the sum ¢(a — b) + b(c — d). Canceling and rearranging terms, we see that this is the same

as m|(ac — bd). But then, by definition of “(mod m),” we see that ac = bd (mod m), as required.
]

Part C: Successive squaring.
In the Exercises for Part A, above, we described a method for obtaining remainders (mod m). This
method works fine for numbers n and k that are relatively small. But it fails when these numbers

are in, say, the hundreds of digits. This is because, for numbers n and k of such a magnitude, n*
can be astronomical, to the point where even the best of computers can’t compute it explicitly.
So for such numbers, we need another strategy.

The strategy that we develop here builds on the techniques of Examples 2 and 3 from Part B
above. The important idea behind those examples is that of “successive squaring.”

Among other things we saw, in those examples, that we could compute 11% (mod 57) without
ever having to deal with a number as large as 11% explicitly. We were able to do so by first
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computing 11% (mod 57), then using this information to compute 11* (mod 57), and finally using
that information, in turn, to compute 11® (mod 57). And the largest number we had to encounter
explicitly, in these investigations, was 2401, which is much smaller than 11% = 214358881.

A similar, but somewhat expanded, strategy will allow us to compute n* efficiently, even for
numbers n and £ in the hundreds of digits. We will illustrate this strategy, below, with substantially
smaller numbers n and k, so that we can do most of the computations “by hand” (or at worst

with a pocket calculator). But the same ideas apply to much much larger numbers.

Example 1. Compute 132" (mod 15).
Solution. Our method here will comprise three main steps.

Step 1: We compute the “binary expansion” of the exponent 27. That is, we express 27 as a sum
of powers of 2. Such an expansion of a natural number £ always exists.

To compute the binary expansion of 27, we first ask: what’s the largest power of 2 that “goes into”

27, in the sense of being less than 277 In this case, the answer is 16 = 2*. Subtract that power
of 2 from 27 to get 11, and ask: what’s the largest power of 2 that goes into 11?7 The answer is

8 = 23. Subtract 8 from 11 to get 3, and ask: a what’s the largest power of 2 that goes into 37
The answer is 2 = 2!, Subtract 2 from 3 to get 1 = 2°, and we're done: we’ve found that

271=16+8+2+1.
To summarize our thought process: we computed that
21=16+11=16+8+3=16+8+2+ 1.
We kept “breaking oft” powers of 2 until there were none left to break off.

Step 2. Make a list of the base, 13, raised to successive powers of 2 (starting with 2° = 1),
(mod 15). Keep going until you've raised the base to the largest power of 2 appearing in Step 1.
Each entry in the list is found by squaring, and reducing (mod 15), the previous entry, as follows.

13 = 13 (mod 15),

132 =169 =15-11+4 =4 (mod 15),
13*=(13*)?=4*=16 = 1 (mod 15),
13° = (1392 =12 = 1 (mod 15),
13'% = (13%)> = 1? = 11 (mod 15).

Step 3. Put Steps 1 and 2 together to compute 132" (mod 15), reducing along the way. Like this:
1327 = 1316+8+2+1 = 1316 . 138 X 132 X 131
—1.1-4-13=52=15-3+7 =7 (mod 15).

To summarize the strategy for finding n* (mod m):

7
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e Step 1. Compute the binary expansion of k (write k as a sum of powers of 2, including, if

necessary, the power 29 = 1).

e Step 2. Make a list of the base n raised to successive powers of 2 (starting with 2° = 1),
(mod m). Keep going until you've raised n to the largest power of 2 appearing in Step 1. Each
entry in the list is found by squaring, and reducing (mod m), the previous entry.

e Step 3. Put Steps 1 and 2 together to compute n* (mod m), reducing along the way to keep
numbers small.

Here’s another example.
Example 2. Compute 2437 (mod 57).
Solution. Step 1: Compute the “binary expansion” of the exponent 37:

37 =32+4+1.

Step 2. Raise the base 24 to successive powers of 2, (mod 57). Keep going through the largest
power of 2 — namely, 32 — appearing in Step 1:

24 = 24 (mod 57),
24% =576 = 57-10 + 6 = 6 (mod 57),
24* = (24?)* = 6° = 36 (mod 57),
24% = (24%)% = 36 = 1296 = 57 - 22 + 42 = 42 (mod 57),
240 = (24%)2 = 42° = 1764 = 57 - 30 + 42 = 54 (mod 57),
247 = (24'9)? = 54% = 2916 = 57 - 51 + 9 = 9 (mod 57).

Step 3. Put Steps 1 and 2 together to compute 243" (mod 57), reducing along the way to keep
numbers small. Like this:

2437 = 2432+4+1 = 2432 . 244 X 241
—0.36-24=324-24= (575 39)-24
=39-24=936=57-16+ 24 = 24 (mod 24).

Note that, in Steps 2 and 3 of Example 2 directly above, we had to compute some remainders
that weren’t immediately obvious. For such remainders, one can use the method of the Exercises
from Part A above.

For example, we computed in Step 2 above that 2916 = 57 - 51 + 9 = 9 (mod 57). How did we
find this? We divided 2916 by 57 on a calculator: we got 2916/57 = 51.15789474. This tells us

8
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that the quotient ¢ is 51: that is, 2916 = 57 - 51 + r, where r is the desired remainder. To find 7,
we now just subtract: r = 2916 — 57-51 = 9. So 2916 = 57 - 51 + 9, so 2916 = 9 (mod 57).

We also note that, in Steps 2 and 3 of both examples above, we used the symbol “=” exclusively,
even though we could have used “=” in some places. For example, we wrote 2437 = 2432+4+1
even though both sides are, in fact, equal. It’s safe to use “=” always, when computing an
answer (mod m), since if two numbers are equal, they're certainly congruent (mod m), for any

m € Z (sincea=b=a—b=0= m|(a —b) = a=0b (mod m), no matter what m is).

It’s not always safe to go the other way though: we can certainly have a = b (mod m) without
having a = 0.

Exercises for Part C.
Using the method of successive squaring:
1. Compute 3% (mod 15).

Solution. Step 1: Compute the binary expansion of the exponent 42:

42 =32+ 8+ 2.

Step 2. Raise the base 3 to successive powers of 2, (mod 15). Keep going through the largest
power of 2 — namely, 32 — appearing in Step 1:

3 =3 (mod 15)

32 =9 (mod 15)
3=(3)?=9"=81=15-5+6 =6 (mod 15),
3% = (3")? = 6% = 36 = 6 (mod 15),
319 = (3%)? = 6% = 36 = 6 (mod 15),
3% = (32 =6 =36 =6 (mod 15).

Step 3. Put Steps 1 and 2 together to compute 3*? (mod 15), reducing along the way to keep
numbers small. Like this:

342 = 332+8+2 = 332 . 38 . 32

=6-6-9=6-54=6-(15-3+9)=6-9=54=15-3+9=9 (mod 15).

2. Compute 27%* (mod 38).
Solution. Step 1: Compute the binary expansion of the exponent 84:

84 = 64 + 16 + 4.



Math 2001-004: Intro to Discrete Math SOLUTIONS Fall 2024

Step 2. Raise the base 27 to successive powers of 2, (mod 38). Keep going through the largest
power of 2 — namely, 64 — appearing in Step 1:

27 = 27 (mod 15),
27 =729 =38-19 +7 =7 (mod 38),
27 = (27%)* = 7 =49 = 11 (mod 38),
= (27" =11"=121=38-3+7 =7 (mod 38),

27" = (27%)2 = 7 = 49 = 11 (mod 38),

27% = (27'9)? = 112 = 121 = 7 (mod 38),

27% = (27%)? = 7 = 49 = 11 (mod 38).

Step 3. Put Steps 1 and 2 together to compute 27%* (mod 38), reducing along the way to keep
numbers small. Like this:

784 764+16+4 764 2716 274

=11-11-11=121-11=7-11=77=38-2+ 1 =1 (mod 38).

3. Numerize the message “HI,” using the numerization key on the first page, and encode it using
the exponent £ = 17 and the modulus m = 8927. Note: you’ll come up with some relatively large
numbers here, which you may want to reduce (mod m) in the way described in the Exercises for
Part A.

For example, you will have to reduce 18192 (mod 8927). Type 18192?/8927 into your calculator to
get something like 370.646 . ... So your quotient is 370. Then enter 18192 — 8927 - 370, to get 5771,
so 5771 is your remainder, so 1819 = 5771 (mod 8927). And so on.

You might want to check your answer against equation (??) on page 2 of these Notes.
Solution. HI— 1819.
Step 1: Compute the binary expansion of 17:

17=16+1.
Step 2. Raise 1819 to successive powers of 2, (mod 8927).

1819 = 1819 (mod 8927),

18192 = 8927 = 38 4 5771 = 5771 (mod 8927),

1819* = (1819?)? = 5771% = 8927 - 3730 + 6731 (mod 8927) = 6731 (mod 8927),
1819° = (1819%)% = 6731 = 8927 - 5075 + 1836 (mod 8927) = 1836 (mod 8927),
1819 = (1819°%)% = 1836% = 8927 - 377 + 5417 (mod 8927) = 5417 (mod 8927).

10
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Step 3. Put Steps 1 and 2 together to compute 181917 (mod 8927):

18197 = 1819'6+! = 1819'6 . 1819
= 5417 - 1819 = 8927 - 1103 4 7042 = 7042 (mod 8927).
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