FINAL EXAM: SOME PRACTICE PROBLEMS

- 1. (a) Use the Euclidean Algorithm to find gcd(123, 321).
 - (b) Find natural numbers x and y solving

$$123x - 321y = \gcd(123, 321).$$

- 2. (a) Use the Euclidean Algorithm to find gcd(247, 156).
 - (b) Find integers x and y solving

$$247x - 156y = \gcd(247, 156).$$

Here, x and y don't need to be positive.

(c) Find natural numbers x and y solving

$$247x - 156y = \gcd(247, 156).$$

3. (a) Find natural numbers x and y such that

$$45x - 56y = 1$$
.

(b) Using the numerization key

A	В	С	D	E	F	G	Н	I	J	K	L	M
11	12	13	14	15	16	17	18	19	20	21	22	23
N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z
24	25	26	27	28	29	30	31	32	33	34	35	36

and the RSA decoding algorithm, with k=45 and m=87, decode the message "17," to obtain a one-letter message.

4. (a) Find positive integers x and y such hat

$$55x - 64y = 1.$$

- (b) Using the numerization key above and the RSA decoding algorithm, with k=55 and m=85, decode the message "25," to obtain a one-letter message.
- 5. (a) Use the Euclidean algorithm to find $\gcd(31, \varphi(55))$.

Answer: $gcd(31, \varphi(55)) =$ _____.

(b) Use the Euclidean algorithm to find integers x and y with $31x - \varphi(55)y = 1$. Here, x and y do not need to be positive.

Answer: $x = ____, y = ____$

(c) Tweak your answer to the previous part of this problem, to find *positive* integers (that is, natural numbers) x and y with $31x - \varphi(55)y = 1$.

Answer: $x = ____, y = ____$

(d) Using k=31 and m=55, decode the message 12, and denumerize to obtain a single-letter message.

Answer: Message = _____