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1. Fibonacci numbers. The Fibonacci numbers Fn are defined by

F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn (n ≥ 1).

2. RSA.

(a) Numerization key.

A B C D E F G H I J K L M
11 12 13 14 15 16 17 18 19 20 21 22 23

N O P Q R S T U V W X Y Z
24 25 26 27 28 29 30 31 32 33 34 35 36

(b) Encoding. To compute nk (mod m):

• Step 1. Compute the binary expansion of k (write k as a sum of powers of 2,
including, if necessary, the power 20 = 1).

• Step 2. Make a list of the base n raised to successive powers of 2 (starting with
20 = 1), (mod m). Keep going until you’ve raised n to the largest power of 2
appearing in Step 1. Each entry in the list is found by squaring, and reducing
(mod m), the previous entry.

• Step 3. Put Steps 1 and 2 together to compute nk (mod m), reducing along
the way to keep numbers small.

(c) Decoding. To decode the message b:

• Step 1. Find natural numbers x and y such that

kx− ϕ(m)y = 1.

(See item 3, “The Euclidean Algorithm,” below.)

• Step 2. Compute bx (mod m): the result is the original message n.

3. Euclidean Algorithm.

(a) To find the gcd (greatest common divisor) of two natural numbers a and b:

• Step 1. Divide the smaller of these two numbers into the larger.

• Step 2. Divide the remainder from the previous step into the divisor from the
previous step.

• Step 3. Repeat Step 2 until you obtain a remainder of zero.

• Step 4. When this happens, the previous remainder is gcd(a, b).
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(b) To find integers x and y such that ax− by = 1:

• Step 1. Take the next-to-last of the “remainder equations” that you produced
in finding gcd(a, b), and solve this equation for its remainder (which, again, is
gcd(a, b)).

• Step 2. Solve the previous remainder equation for the remainder there, and
plug this result into the formula just derived for gcd(a, b). Then simplify by
collecting like terms.

• Step 3. Repeat Step 2 until you’re done.

4. Quantifiers.

(a) The quantifier “∀” means “for all,” or “for each,” or “for every.”

If X is a set and Q(x) is a statement about a quantity x, then the statement

∀x ∈ X : Q(x)

means the statement Q(x) is true for every x in X.

(b) The quantifier “∃” means “for some,” or “for at least one,” or “there exists.”

If X is a set and Q(x) is a statement about a quantity x, then the statement

∃x ∈ X : Q(x)

means the statement Q(x) is true some (at least one, possible more) x in X.

5. Counting.

(a) Multiplication principle: if there are m ways of doing Thing 1 and, for each of these
ways, there are n ways of doing Thing 2, then there are mn ways of doing Thing
1 and Thing 2 together. Corollary: the number of length-k lists that can be made
from n items is

• nk if repetition is allowed;

• P (n, k) = n(n− 1)(n− 2) · · · (n− k + 1) =
n!

(n− k)!
if not.

(b) Subtraction principle: the number of lists, or sets, with a property P equals the total
number of possible lists, or sets, minus the number of lists, or sets, without property
P .

(c) Addition principle: if there are m ways of doing Thing 1 and n ways of doing Thing
2, then there are m+n ways of doing Thing 1 or Thing 2 (or both), provided you’re
not counting twice.

(d) Inclusion-exclusion principle: in general (that is, even if you are counting twice), if
there are m ways of doing Thing 1 and n ways of doing Thing 2, then the number
of ways of doing Thing 1 or Thing 2 (or both) is m + n minus the number of ways
of doing Thing 1 and Thing 2 together.
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(e) The number of k-elements subsets of a set with n elements is

C(n, k) =

(
n

k

)
=

n!

k!(n− k)!
.

6. Proof by the principle of mathematical induction.

Theorem. ∀n ∈ N, A(n).

Proof. Step 1: Is A(1) true? [Now do what you need to conclude:] So A(1) is true.

Step 2: Assume A(k). [Now do what you need to conclude:] So A(k + 1) follows. So
A(k)⇒ A(k + 1).

Therefore, by the principle of mathematical induction, A(n) is true ∀n ∈ N. �

7. Basic set definitions. Given sets A and B, and a universe U that contains all sets in
question, we define:

(a) A ∪B = {x ∈ U : x ∈ A or x ∈ B}.
(b) A ∩B = {x ∈ U : x ∈ A and x ∈ B}.
(c) A−B = {x ∈ A : x 6∈ B}.
(d) A×B = {ordered pairs (x, y) : x ∈ A and y ∈ B}.
(e) A = U − A.
(f) P(A) = {all subsets of A}.
(g)

∣∣P (A)
∣∣ = 2|A| for any set A.

(h) The statement A ⊆ B is equivalent to the statement x ∈ A⇒ x ∈ B.

8. Intersection and union of indexed sets. Given an indexing set I and a set Aα for
each α ∈ I, and a universe U , we define

(a)
⋃
α∈I

Aα = {x ∈ U : x ∈ Aα for some α ∈ I}.

(b)
⋂
α∈I

Aα = {x ∈ U : x ∈ Aα for all α ∈ I}.

9. Proof templates.

(a) P ⇒ Q, direct proof.

Theorem. P ⇒ Q.
Proof. Assume P . [Now do what you need to conclude:] Therefore, Q.
So P ⇒ Q. �

(b) P ⇒ Q, contrapositive proof.

Theorem. P ⇒ Q.
Proof. Assume ∼ Q. [Now do what you need to conclude:] Therefore,
∼ P .
So P ⇒ Q. �
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(c) P ⇔ Q.

Theorem. P ⇔ Q.
Proof. Assume P . [Now do what you need to conclude:] Therefore, Q.
So P ⇒ Q.
Next, assume Q. [Now do what you need to conclude:] Therefore, P .
So Q⇒ P.
Therefore, P ⇔ Q. �

(d) A ⊆ B.

Theorem. A ⊆ B.
Proof. Assume x ∈ A. [Now do what you need to conclude:] Therefore,
x ∈ B.
So A ⊆ B. �

(e) A = B.

Theorem. A = B.
Proof. Assume x ∈ A. [Now do what you need to conclude:] Therefore,
x ∈ B.
So A ⊆ B.
Now assume x ∈ B. [Now do what you need to conclude:] Therefore, x ∈ A.
So B ⊆ A.
Therefore, A = B. �

(f) Proof by counterexample. To prove that a statement is false, you need only find one
instance where the statement fails.

10. Some special sets.

(a) Z = {integers} = {. . . ,−2,−1, 0, 1, 2, . . .}.
(b) N = {natural numbers} = {1, 2, 3, . . .}.
(c) R = {real numbers} = (−∞,∞).

(d) Q = {rational numbers} = {fractions m/n : m,n ∈ Z and n 6= 0}.
(e) Let a, b ∈ Z. We write a+ bZ for the set {a+ bm : m ∈ Z}.

11. Facts about integers.

(a) Let a, b ∈ Z. We say a divides b, written a|b, if b = na for some n ∈ Z.

(b) (Division algorithm.) Given integers a and b with b > 0, there exist unique integers
q and r for which a = qb+ r and 0 ≤ r < b.

(c) Let a, b, c ∈ Z. If c|a and c|b, then c|(a+ b) and c|(a− b).
(d) Let a, b ∈ Z. If b|a, then b|na for any n ∈ Z.


