MATH 2001-004: Intro to Discrete Math FINAL EXAM FACT SHEET

1. Fibonacci numbers. The Fibonacci numbers F), are defined by

F1 = ]_, F2 = 1, Fn+2 = Fn+1 + Fn (n Z ]_)

2. RSA.

(a) Numerization key.

A[BICID|[E[JF|GIH|ITI[J[K|L[M
111213141516 |17 | 18] 1920 |21 |22 23
NIO[P[Q|R|S|T|U|VIWI[X|Y]|Z
24 (252627282930 313233343536

(b) Encoding. To compute n* (mod m):
e Step 1. Compute the binary expansion of k (write k£ as a sum of powers of 2,
including, if necessary, the power 2° = 1).

e Step 2. Make a list of the base n raised to successive powers of 2 (starting with
20 = 1), (mod m). Keep going until you've raised n to the largest power of 2
appearing in Step 1. Each entry in the list is found by squaring, and reducing
(mod m), the previous entry.

e Step 3. Put Steps 1 and 2 together to compute n* (mod m), reducing along
the way to keep numbers small.

(c) Decoding. To decode the message b:
e Step 1. Find natural numbers x and y such that

kx —p(m)y = 1.

(See item 3, “The Euclidean Algorithm,” below.)
e Step 2. Compute b” (mod m): the result is the original message n.

3. Euclidean Algorithm.

(a) To find the ged (greatest common divisor) of two natural numbers a and b:

e Step 1. Divide the smaller of these two numbers into the larger.

e Step 2. Divide the remainder from the previous step into the divisor from the
previous step.

e Step 3. Repeat Step 2 until you obtain a remainder of zero.
e Step 4. When this happens, the previous remainder is ged(a, b).
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(b)

To find integers x and y such that ax — by = 1:

e Step 1. Take the next-to-last of the “remainder equations” that you produced
in finding ged(a, b), and solve this equation for its remainder (which, again, is
ged(a, b)).

e Step 2. Solve the previous remainder equation for the remainder there, and
plug this result into the formula just derived for ged(a,b). Then simplify by
collecting like terms.

e Step 3. Repeat Step 2 until you're done.

4. Quantifiers.

(a)

(b)

The quantifier “V” means “for all,” or “for each,” or “for every.”
If X is a set and Q(x) is a statement about a quantity z, then the statement

Ve e X : Q(x)

means the statement Q(x) is true for every z in X.

Y

The quantifier “4” means “for some,” or “for at least one,” or “there exists.”

If X is a set and Q(x) is a statement about a quantity z, then the statement
dre X : Q(x)

means the statement Q(x) is true some (at least one, possible more) x in X.

5.

Counting.

(a)

Multiplication principle: if there are m ways of doing Thing 1 and, for each of these
ways, there are n ways of doing Thing 2, then there are mn ways of doing Thing
1 and Thing 2 together. Corollary: the number of length-£ lists that can be made
from n items is

e 1% if repetition is allowed;

e Plnk)=nn—1)(n—-2)---(n—k+1)=

|

———— if not.

(n—k)!

Subtraction principle: the number of lists, or sets, with a property P equals the total
number of possible lists, or sets, minus the number of lists, or sets, without property

P.

Addition principle: if there are m ways of doing Thing 1 and n ways of doing Thing
2, then there are m 4 n ways of doing Thing 1 or Thing 2 (or both), provided you're
not counting twice.

Inclusion-exclusion principle: in general (that is, even if you are counting twice), if
there are m ways of doing Thing 1 and n ways of doing Thing 2, then the number
of ways of doing Thing 1 or Thing 2 (or both) is m + n minus the number of ways
of doing Thing 1 and Thing 2 together.
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(e) The number of k-elements subsets of a set with n elements is

6. Proof by the principle of mathematical induction.
Theorem. Vn € N, A(n).
Proof. Step 1: Is A(1) true? [Now do what you need to conclude:] So A(1) is true.

Step 2: Assume A(k). [Now do what you need to conclude:] So A(k + 1) follows. So
A(k) = A(k+1).

Therefore, by the principle of mathematical induction, A(n) is true Yn € N. [

7. Basic set definitions. Given sets A and B, and a universe U that contains all sets in
question, we define:

&
~—

AUB={zxeU:z € Aorx € B}.
ANB={zxe€eU:x € Aand x € B}.
A-B={xe€A:z ¢ B}.

A x B = {ordered pairs (z,y) : x € A and y € B}.

8/\—/\_/

e) A=U— A

f) Z2(A) = {all subsets of A}.

g) |P(A)| =21 for any set A.

h) The statement A C B is equivalent to the statement z € A = z € B.

8. Intersection and union of indexed sets. Given an indexing set [ and a set A, for
each o € I, and a universe U, we define

(a) JAa={x€U:ze€ A, for some a € I}.

acl

(b) NAa={zxeU:xe€ A, forall a eI}

ael

9. Proof templates.

(a) P = @, direct proof.

Theorem. P = Q).
Proof. Assume P. [Now do what you need to conclude:] Therefore, Q.
So P=¢@Q. O

(b) P = @, contrapositive proof.

Theorem. P = ().

Proof. Assume ~ ). [Now do what you need to conclude:] Therefore,
~ P.

So P=@Q. O
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(c)

P<s Q.

Theorem. P < ().

Proof. Assume P. [Now do what you need to conclude:] Therefore, Q.
So P = Q.

Next, assume ). [Now do what you need to conclude:] Therefore, P.
So Q = P.

Therefore, P < (). [

(d) ACB.

(e)

(f)

Theorem. A C B.

Proof. Assume z € A. [Now do what you need to conclude:] Therefore,
r € B.

So ACB. O

A=B.

Theorem. A = B.

Proof. Assume z € A. [Now do what you need to conclude:] Therefore,
x € B.

So AC B.

Now assume z € B. [Now do what you need to conclude:] Therefore, xz € A.
So B C A.

Therefore, A= B. [

Proof by counterexample. To prove that a statement is false, you need only find one
instance where the statement fails.

10. Some special sets.

(a)
(b)
(c)
(d)
(e)

7 = {integers} = {...,—-2,—1,0,1,2,...}.

N = {natural numbers} = {1,2,3,...}.

R = {real numbers} = (—o0, 00).

Q = {rational numbers} = {fractions m/n : m,n € Z and n # 0}.

Let a,b € Z. We write a + bZ for the set {a 4+ bm : m € Z}.

11. Facts about integers.

Let a,b € Z. We say a divides b, written alb, if b = na for some n € Z.

(Division algorithm.) Given integers a and b with b > 0, there exist unique integers
q and r for which a =¢b+r and 0 <r < b.

Let a,b,c € Z. If c|a and ¢|b, then ¢|(a + b) and c|(a — b).
Let a,b € Z. If bla, then b|na for any n € Z.



