1. Fibonacci numbers. The Fibonacci numbers F_n are defined by

$$F_1 = 1,$$
 $F_2 = 1,$ $F_{n+2} = F_{n+1} + F_n$ $(n \ge 1).$

2. RSA.

(a) Numerization key.

A	В	С	D	Е	F	G	Н	I	J	K	L	M
11	12	13	14	15	16	17	18	19	20	21	22	23
N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z
24	25	26	27	28	29	30	31	32	33	34	35	36

(b) Encoding. To compute $n^k \pmod{m}$:

• Step 1. Compute the binary expansion of k (write k as a sum of powers of 2, including, if necessary, the power $2^0 = 1$).

• Step 2. Make a list of the base n raised to successive powers of 2 (starting with $2^0 = 1$), (mod m). Keep going until you've raised n to the largest power of 2 appearing in Step 1. Each entry in the list is found by squaring, and reducing (mod m), the previous entry.

• Step 3. Put Steps 1 and 2 together to compute $n^k \pmod{m}$, reducing along the way to keep numbers small.

(c) Decoding. To decode the message b:

• Step 1. Find natural numbers x and y such that

$$kx - \varphi(m)y = 1.$$

(See item 3, "The Euclidean Algorithm," below.)

• Step 2. Compute $b^x \pmod{m}$: the result is the original message n.

3. Euclidean Algorithm.

(a) To find the gcd (greatest common divisor) of two natural numbers a and b:

• Step 1. Divide the smaller of these two numbers into the larger.

• Step 2. Divide the remainder from the previous step into the divisor from the previous step.

 \bullet Step 3. Repeat Step 2 until you obtain a remainder of zero.

• Step 4. When this happens, the previous remainder is gcd(a, b).

- (b) To find integers x and y such that ax by = 1:
 - Step 1. Take the next-to-last of the "remainder equations" that you produced in finding gcd(a, b), and solve this equation for its remainder (which, again, is gcd(a, b)).
 - Step 2. Solve the previous remainder equation for the remainder there, and plug this result into the formula just derived for gcd(a, b). Then simplify by collecting like terms.
 - Step 3. Repeat Step 2 until you're done.

4. Quantifiers.

(a) The quantifier " \forall " means "for all," or "for each," or "for every." If X is a set and Q(x) is a statement about a quantity x, then the statement

$$\forall x \in X : Q(x)$$

means the statement Q(x) is true for every x in X.

(b) The quantifier " \exists " means "for some," or "for at least one," or "there exists." If X is a set and Q(x) is a statement about a quantity x, then the statement

$$\exists x \in X : Q(x)$$

means the statement Q(x) is true some (at least one, possible more) x in X.

5. Counting.

- (a) Multiplication principle: if there are m ways of doing Thing 1 and, for each of these ways, there are n ways of doing Thing 2, then there are mn ways of doing Thing 1 and Thing 2 together. Corollary: the number of length-k lists that can be made from n items is
 - n^k if repetition is allowed;

•
$$P(n,k) = n(n-1)(n-2)\cdots(n-k+1) = \frac{n!}{(n-k)!}$$
 if not.

- (b) Subtraction principle: the number of lists, or sets, with a property P equals the total number of possible lists, or sets, minus the number of lists, or sets, without property P.
- (c) Addition principle: if there are m ways of doing Thing 1 and n ways of doing Thing 2, then there are m+n ways of doing Thing 1 or Thing 2 (or both), provided you're not counting twice.
- (d) Inclusion-exclusion principle: in general (that is, even if you are counting twice), if there are m ways of doing Thing 1 and n ways of doing Thing 2, then the number of ways of doing Thing 1 or Thing 2 (or both) is m + n minus the number of ways of doing Thing 1 and Thing 2 together.

(e) The number of k-elements subsets of a set with n elements is

$$C(n,k) = \binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

6. Proof by the principle of mathematical induction.

Theorem. $\forall n \in \mathbb{N}, A(n).$

Proof. Step 1: Is A(1) true? [Now do what you need to conclude:] So A(1) is true.

Step 2: Assume A(k). [Now do what you need to conclude:] So A(k+1) follows. So $A(k) \Rightarrow A(k+1)$.

Therefore, by the principle of mathematical induction, A(n) is true $\forall n \in \mathbb{N}$. \square

- 7. Basic set definitions. Given sets A and B, and a universe U that contains all sets in question, we define:
 - (a) $A \cup B = \{x \in U : x \in A \text{ or } x \in B\}.$
 - (b) $A \cap B = \{x \in U : x \in A \text{ and } x \in B\}.$
 - (c) $A B = \{x \in A : x \notin B\}.$
 - (d) $A \times B = \{ \text{ordered pairs } (x, y) : x \in A \text{ and } y \in B \}.$
 - (e) $\overline{A} = U A$.
 - (f) $\mathscr{P}(A) = \{\text{all subsets of } A\}.$
 - (g) $|P(A)| = 2^{|A|}$ for any set A.
 - (h) The statement $A \subseteq B$ is equivalent to the statement $x \in A \Rightarrow x \in B$.
- 8. Intersection and union of indexed sets. Given an indexing set I and a set A_{α} for each $\alpha \in I$, and a universe U, we define
 - (a) $\bigcup_{\alpha \in I} A_{\alpha} = \{ x \in U : x \in A_{\alpha} \text{ for some } \alpha \in I \}.$
 - (b) $\bigcap_{\alpha \in I} A_{\alpha} = \{ x \in U : x \in A_{\alpha} \text{ for all } \alpha \in I \}.$
- 9. Proof templates.
 - (a) $P \Rightarrow Q$, direct proof.

Theorem. $P \Rightarrow Q$.

Proof. Assume P. [Now do what you need to conclude:] Therefore, Q. So $P \Rightarrow Q$. \square

(b) $P \Rightarrow Q$, contrapositive proof.

Theorem. $P \Rightarrow Q$.

Proof. Assume $\sim Q$. [Now do what you need to conclude:] Therefore, $\sim P$.

So $P \Rightarrow Q$. \square

(c) $P \Leftrightarrow Q$.

Theorem. $P \Leftrightarrow Q$.

Proof. Assume P. [Now do what you need to conclude:] Therefore, Q. So $P \Rightarrow Q$.

Next, assume Q. [Now do what you need to conclude:] Therefore, P.

So $Q \Rightarrow P$.

Therefore, $P \Leftrightarrow Q$.

(d) $A \subseteq B$.

Theorem. $A \subseteq B$.

Proof. Assume $x \in A$. [Now do what you need to conclude:] Therefore, $x \in B$.

So $A \subseteq B$.

(e) A = B.

Theorem. A = B.

Proof. Assume $x \in A$. [Now do what you need to conclude:] Therefore, $x \in B$.

So $A \subseteq B$.

Now assume $x \in B$. [Now do what you need to conclude:] Therefore, $x \in A$.

So $B \subseteq A$.

Therefore, A = B. \square

(f) Proof by counterexample. To prove that a statement is false, you need only find one instance where the statement fails.

10. Some special sets.

- (a) $\mathbb{Z} = \{\text{integers}\} = \{\dots, -2, -1, 0, 1, 2, \dots\}.$
- (b) $\mathbb{N} = \{\text{natural numbers}\} = \{1, 2, 3, \ldots\}.$
- (c) $\mathbb{R} = \{\text{real numbers}\} = (-\infty, \infty).$
- (d) $\mathbb{Q} = \{ \text{rational numbers} \} = \{ \text{fractions } m/n : m, n \in \mathbb{Z} \text{ and } n \neq 0 \}.$
- (e) Let $a, b \in \mathbb{Z}$. We write $a + b\mathbb{Z}$ for the set $\{a + bm : m \in \mathbb{Z}\}$.

11. Facts about integers.

- (a) Let $a, b \in \mathbb{Z}$. We say a divides b, written a|b, if b = na for some $n \in \mathbb{Z}$.
- (b) (Division algorithm.) Given integers a and b with b > 0, there exist unique integers q and r for which a = qb + r and $0 \le r < b$.
- (c) Let $a, b, c \in \mathbb{Z}$. If c|a and c|b, then c|(a+b) and c|(a-b).
- (d) Let $a, b \in \mathbb{Z}$. If b|a, then b|na for any $n \in \mathbb{Z}$.