EXAM 1: MORE COMPLETELY RANDOM PRACTICE PROBLEMS

1. Consider sets A, B, and D defined by

$$A = \{\text{even integers}\} = 2\mathbb{Z}, \qquad B = \{3, 4, 5, 6, 7, 8\}, \qquad D = \{5, 6, 7, 8, 9, 10\}.$$

Find:

(a)
$$B - D = \{3, 4\}$$

(b)
$$(B \cup D) - A = \{3, 5, 7, 9\}$$

(c)
$$(B \cap D) - A = \{5, 7\}$$

(d)
$$\mathscr{P}((B \cap D) - A) = \{\emptyset, \{5\}, \{7\}, \{5, 7\}\}\$$

2. (Note: for this problem, it might help to draw some pictures.) For each $n \in \mathbb{N}$, define a set A_n by

$$A_n = [n+1, n+4] = \{x \in \mathbb{R} : n+1 \le x \le n+4\}.$$

Find:

(a)
$$\bigcup_{n=1}^{3} A_n = [2, 7]$$

(b)
$$\bigcap_{n=1}^{3} A_n = [4, 5]$$

(c)
$$\bigcup_{n=1}^{\infty} A_n = [2, \infty)$$

(d)
$$\bigcap_{n=1}^{\infty} A_n = \emptyset$$

3. (13 points; one point for each blank) Fill in the blanks (there are 13 of them) to complete the proof of the following theorem:

Theorem. For any sets A, B, and C, we have

$$A \subseteq B \Rightarrow C - B \subseteq C - A$$
.

Proof. Let A, B, and C be ______

Assume $A \subseteq \underline{B}$. We wish to conclude that $C - B \subseteq \underline{C - A}$. To do this, assume $x \in \underline{C - B}$. Then $x \in C$ and $x \notin B$, by definition of set difference

Now the assumption $A\subseteq B$ is equivalent to the statement $x\in A\Rightarrow \underline{x\in B}$, which is equivalent to the contrapositive statement $x\not\in B\Rightarrow \underline{x\not\in A}$. So, since $A\subseteq B$ and $x\not\in B$, we conclude that $\underline{x\not\in A}$. Therefore, since $x\in C$ as already noted, we have $x\in \underline{C-A}$, by definition of $\underline{\text{set difference}}$.

We have shown that, if $A \subseteq B$, then $x \in C - B \Rightarrow \underline{x \in C - A}$. In other words,

$$A \subseteq B \Rightarrow C - B \subseteq \underline{C - A}$$
,

and we're done.

ATWMR

(In the last blank above, supply an end-of-proof tagline of your own devising.)

- **4.** Let $A = \{4, 5\}$, $B = \{2, 3\}$, and $C = \{1, 2, 3\}$.
 - (a) (5 points) Is it true that $C B \subseteq C A$? Explain. Yes it's true, because $C - B = \{1\}$ and $C - A = \{1, 2, 3\}$, and $\{1\} \subseteq \{1, 2, 3\}$.
 - (b) (6 points) Is it true that $A \subseteq B$? No, $\{4,5\} \not\subseteq \{2,3\}$.
 - (c) (6 points) Is it true that, for any sets A, B, and C,

$$C - B \subseteq C - A \Rightarrow A \subseteq B$$
?

Please explain. (You may want to use parts (a) and (b) of this problem.)

No, this is not true for any sets A, B, and C. Counterexample: for the sets A, B, and C above, we have $C - B \subseteq C - A$, but it's false that $A \subseteq B$.