EXAM 1: MORE COMPLETELY RANDOM PRACTICE PROBLEMS

1. Consider sets A, B, and D defined by

$$A = \{\text{even integers}\} = 2\mathbb{Z}, \qquad B = \{3, 4, 5, 6, 7, 8\}, \qquad D = \{5, 6, 7, 8, 9, 10\}.$$

Find:

- (a) B-D
- (b) $(B \cup D) A$
- (c) $(B \cap D) A$
- (d) $\mathscr{P}((B \cap D) A)$
- **2.** (Note: for this problem, it might help to draw some pictures.) For each $n \in \mathbb{N}$, define a set A_n by

$$A_n = [n+1, n+4] = \{x \in \mathbb{R} : n+1 \le x \le n+4\}.$$

Find:

- (a) $\bigcup_{n=1}^{3} A_n$
- (b) $\bigcap_{n=1}^{3} A_n$
- (c) $\bigcup_{n=1}^{\infty} A_n$
- (d) $\bigcap_{n=1}^{\infty} A_n$
- **3.** (13 points; one point for each blank) Fill in the blanks (there are 13 of them) to complete the proof of the following theorem:

Theorem. For any sets A, B, and C, we have

$$A \subseteq B \Rightarrow C - B \subseteq C - A$$
.

Proof. Let A, B, and C be ______.

Assume $A \subseteq$ ______. We wish to conclude that $C - B \subseteq$ ______. To do this, assume $x \in$ ______. Then $x \in C$ and $x \notin B$, by definition of _____.

Now the assumption $A \subseteq B$ is equivalent to the statement $x \in A \Rightarrow$ _____.

Now the assumption $A\subseteq B$ is equivalent to the statement $x\in A\Rightarrow$ ______, which is equivalent to the contrapositive statement $x\not\in B\Rightarrow$ ______. So, since $A\subseteq B$ and $x\not\in B$, we conclude that ______. Therefore, since $x\in C$ as already noted, we have $x\in$ ______, by definition of ______.

We have shown that, if $A \subseteq B$, then $x \in C - B \Rightarrow$ ______. In other words,

$$A \subseteq B \Rightarrow C - B \subseteq \underline{\hspace{1cm}},$$

and we're done.

(In the last blank above, supply an end-of-proof tagline of your own devising.)

- **4.** Let $A = \{4, 5\}$, $B = \{2, 3\}$, and $C = \{1, 2, 3\}$.
 - (a) (5 points) Is it true that $C B \subseteq C A$? Explain.
 - (b) (6 points) Is it true that $A \subseteq B$?
 - (c) (6 points) Is it true that, for any sets A, B, and C,

$$C - B \subseteq C - A \Rightarrow A \subseteq B$$
?

Please explain. (You may want to use parts (a) and (b) of this problem.)