- 1. Basic set definitions. Given sets A and B, and a universe U that contains all sets in question, we define:
 - (a) $A \cup B = \{x \in U : x \in A \text{ or } x \in B\}.$
 - (b) $A \cap B = \{x \in U : x \in A \text{ and } x \in B\}.$
 - (c) $A B = \{x \in A : x \notin B\}.$
 - (d) $A \times B = \{ \text{ordered pairs } (x, y) : x \in A \text{ and } y \in B \}.$
 - (e) $\overline{A} = U A$.
 - (f) $\mathscr{P}(A) = \{\text{all subsets of } A\}.$
 - (g) $|P(A)| = 2^{|A|}$ for any set A.
 - (h) The statement $A \subseteq B$ is equivalent to the statement $x \in A \Rightarrow x \in B$.
- **2. Intersection and union of indexed sets.** Given an indexing set I and a set A_{α} for each $\alpha \in I$, and a universe U, we define
 - (a) $\bigcup_{\alpha \in I} A_{\alpha} = \{ x \in U : x \in A_{\alpha} \text{ for some } \alpha \in I \}.$
 - (b) $\bigcap_{\alpha \in I} A_{\alpha} = \{x \in U : x \in A_{\alpha} \text{ for all } \alpha \in I\}.$
- 3. Proof templates.
 - (a) $P \Rightarrow Q$, direct proof.

Theorem. $P \Rightarrow Q$.

Proof. Assume P. [Now do what you need to conclude:] Therefore, Q. So $P \Rightarrow Q$. \square

(b) $P \Rightarrow Q$, contrapositive proof.

Theorem. $P \Rightarrow Q$.

Proof. Assume $\sim Q$. [Now do what you need to conclude:] Therefore, $\sim P$. So $P \Rightarrow Q$. \square

(c) $P \Leftrightarrow Q$.

Theorem. $P \Leftrightarrow Q$.

Proof. Assume P. [Now do what you need to conclude:] Therefore, Q. So $P \Rightarrow Q$.

Next, assume Q. [Now do what you need to conclude:] Therefore, P. So $Q \Rightarrow P$.

Therefore, $P \Leftrightarrow Q$. \square

(d) $A \subseteq B$.

Theorem. $A \subseteq B$.

Proof. Assume $x \in A$. [Now do what you need to conclude:] Therefore, $x \in B$.

So $A \subseteq B$. \square

(e) A = B.

Theorem. A = B.

Proof. Assume $x \in A$. [Now do what you need to conclude:] Therefore, $x \in B$.

So $A \subseteq B$.

Now assume $x \in B$. [Now do what you need to conclude:] Therefore, $x \in A$. So $B \subseteq A$.

Therefore, A = B. \square

- (f) Proof by counterexample. To prove that a statement is false, you need only find one instance where the statement fails.
- 4. Some special sets.
 - (a) $\mathbb{Z} = \{\text{integers}\} = \{\dots, -2, -1, 0, 1, 2, \dots\}.$
 - (b) $\mathbb{N} = \{ \text{natural numbers} \} = \{1, 2, 3, \ldots \}.$
 - (c) $\mathbb{R} = \{\text{real numbers}\} = (-\infty, \infty).$
 - (d) $\mathbb{Q} = \{ \text{rational numbers} \} = \{ \text{fractions } m/n : m, n \in \mathbb{Z} \text{ and } n \neq 0 \}.$
 - (e) Let $a, b \in \mathbb{Z}$. We write $a + b\mathbb{Z}$ for the set $\{a + bm : m \in \mathbb{Z}\}$.

5. Facts about integers.

- (a) Let $a, b \in \mathbb{Z}$. We say a divides b, written a|b, if b = na for some $n \in \mathbb{Z}$.
- (b) (Division algorithm.) Given integers a and b with b>0, there exist unique integers q and r for which a=qb+r and $0 \le r < b$.