Prelude to RSA decoding, continued.

1) Greatest common divisor.

Recall: the greatest common divisor gadla, b) of a, b ∈ I is defined by

qcd(a,b) = largest natural number dividing a and b (unless a=b=0: define qcd(0,0)=0).

E.g. $q \in \mathcal{A}(21, 28) = 7$, $q \in \mathcal{A}(810, 168) = q \in \mathcal{A}(2.3.5, 2.3.7)$ = 2.3 = 6 $q \in \mathcal{A}(1,0) = 1$ $= q \in \mathcal{A}(11111, 11111111)$ $= q \in \mathcal{A}(3.7.11.13.37, 11.73.101.137) = 11$ e.tc.

Definition: If $a,b \in \mathbb{Z}$ satisfy gcd(a,b)=1, we say a,b are coprime (or relatively prime).

2) Two theorems without proof.

Theorem RSA_1 .

If $a,b \in |N|$ are coprime, then $\exists x,y \in |N|$ such that ax - by = 1.

Some examples:

(a) 35 and 128 are coprine; note that 35.11-128.3=1.

(b) 1 and 10^{98} are coprime; note that $1 \cdot (10^{98} + 1) - 10^{98} \cdot 1 = 1$.

(b) a and at l are coprime for $a \in \mathbb{Z}$; note that

 $a \cdot a - (a+1)(a-1) = a^2 - (a^2-1) = 1$.

(c) 101 and 103 are coprime (and prime); note that 101.51-103.50 = 1.

Note also that 103 and 101 are coprime, and $103\cdot51-101\cdot52=1$.

Theorem RSAz (Euler's formula.)
Let p,q E/N be distinct primes. Let m=pq,

and define

$$\varphi(m) = (p-1)(q-1)$$

("Euler's \(\rho\) function").

Then for any a EZ that's coprime to m, we have $g(m) = 1 \pmod{m}$.

Examples.

(a) Let
$$m = 35 = 5.7$$
.

We have
$$\varphi(m) = (5-1)(7-1) = 4.6 = 24.$$

Let
$$a = 11$$
. Then $gcd(a, m) = gcd(11, 35) = 1$, so by Theorem RSA2, $a^{p(m)} = 1 \pmod{m}$:

We can check this by successive squaring:

$$11^8 = 11^2 = 16 \pmod{35}$$
 $11^{16} = 16^2 = 11 \pmod{35}$

$$50 | 18 = 16 | 18 = 11.16 = 176 = 1 \pmod{35}.$$

$$\varphi(m) = (101-1)(103-1) = 100 \cdot 102$$
= $10200 = 10^{3} \cdot 2.51$
= $2^{3} \cdot 5^{3} \cdot 2 \cdot 3.17 = 2^{3} \cdot 3.5^{3} \cdot 17$.

Let a = 11011 = 7.112.13.

Then gcd(a,m) = 1, so by Theorem RSA2, $10010 = 1 \pmod{10403}$.