More on RSA.

- (A) Recall: to encode a message made up, let's assume, of only the letters A,..., Z we:
 - (1) Numerize: that is, convert to an integer

A→ 11, B→ 12,C→ 13, ..., Z→36.

E.g. suppose our message is "B:"we convert it to n=12.

- (2) Raise n to a natural number k. E.g. if k=7, then n = 12 = 35,831,808.
- (3) Let m be another natural number.

 Find the remainder r of n after division by m. E.g. let m = 35:

 It can be shown that

$$12^7 = 35 \cdot 1,023,765 + 33.$$
 (*)

So the encoded message we transmit is

Big QUESTION: how did we find (*)? More generally, how do we "reduce nk (mod n)"

(meaning: find the remainder of n after division by m)? ANSWER: (B) successive squaring. Throughout, all lower-case variable names denote integers. Recall: If m(a-b), we write $a \equiv b \pmod{m}$. E.g. $79 \equiv 7 \pmod{12}$ (since $79 - 7 \equiv 72$) = 12.6), $3^5 \equiv 3 \pmod{5}$ (since $3^5 = 3 = 5.48$), $-242107 = -107 \pmod{242}$, etc. So, to find n mod m - that is, to find the number r with $n^k = mq + r$ (0 \(r < m \), we need to find the number r with $n = r \pmod{n} \quad (0 \le r \le m).$ We do so by "successive squaring." Example 1.
Reduce 12 (mod 35).

Step 1. First, find the "binary expansion" of the exponent 7 (express 7 as sums of powers of 2).

We have = 4+2+1.

$$12^{1} = 12 \pmod{35}$$
,
 $12^{2} = 144 = 35.4 + 4 = 4 \pmod{35}$,
 $12^{4} = (12^{2})^{2} = 4^{2} = 16 \pmod{35}$.

Step3. Put it all together to find 12 (mod 35).

The trick is to keep reducing factors (mod 35), until the final result is <35, like this:

$$12^{7} = 12^{4+2+1} = 12^{4} \cdot 12^{2} \cdot 12^{1}$$

$$= 16 \cdot 4 \cdot 12$$

$$= 16 \cdot 48 = 16 \cdot (35 \cdot 1 + 13)$$

$$= 16 \cdot 13$$

$$= 208 = 35 \cdot 5 + 33$$

$$= 33 \pmod{35}.$$

Example 2.

Reduce 11 (mod 51).

Stepa:

$$||^{1} = 1|$$
 (mod 51),
 $||^{2} = |2| = 5|\cdot 2 + 19 = 19$ (mod 51),
 $||^{4} = (11^{2})^{2} = 19^{2} = 361 = 51 \cdot 7 + 4 = 4$ (mod 51),
 $||^{8} = (11^{4})^{2} = 4^{2} = 16$ (mod 51),

$$|1|^{16} \equiv (11^8)^2 \equiv 16^2 \equiv 256 \equiv 51 - 5 + 1 \equiv 1 \pmod{51},$$
 $|1|^{32} \equiv (11^{16})^2 \equiv 1^2 \equiv 1 \pmod{51}.$

Step 3: So

$$39 = 32+4+2+1$$
 $|1| = |1| =$