The RSA encryption aborithm

* Rivest-Shamir - Adleman, 1977 (Also developed in 1973 by British intelligence, declassified 1997.)

Basic premise:

- · Multiplying is easy, but · factoring is hard.
- (A) Here's how RSA encoding works:
- (1) First convert the message to numbers, in some sample way (e.g. A > 11, B → 12, C > 13, Convert punctuation etc. similarly). E.g. MATH > 23113018.
- 12) Take the resulting message (e.g. 23113018) call it n. Raise n to a very large natural number k.
- (3) Take the result, and compute its remainder after division by a large integer m. That is, write

n = mq+r where 0 = r < m.

Then r is the coded message you send. It's a coded version of n.

(B) Decoding:

(1) under certain conditions, if you

know how m factors, you can recover the original message n from its coded version r. That is, you can decode r. How? We'll answer before long.

(2) But: if you don't know how in factors,
you can't decode. Unless you can
determine how in factors - but remember,
factoring is hard.

(c) "Public key."

The RSA algorithm is public key. This means: knowing how to encode doesn't tell you how to decode.

Specifically: I can give everyone k and m land the "easy" translation A > 11, B > 12, etc.), and then anyone can encode a message n (by writing n = mq tr with 0 = r cm: then r is the coded message). But if I don't say how in factors (and you can't figure it out), you can't decode!

(D) some number theory.

If we write $n^{k} = mq + \Gamma$ $(O \leq \Gamma \leq m)$,

then $n^{-}\Gamma = mq$, so $m \mid (n^{k} - \Gamma)$. ∞ :

it will be useful to study situations where ml(a-b), for integers a, b, m.

Definition.

Let a, b, $m \in \mathbb{Z}$. We say "a is congruent to b mod m," and write

 $a \equiv b \pmod{m}$

if m1 (a-b).

Examples

122 = 87 (mod 5) (since 5/35 = 122-87,

 $-13 = 8 \pmod{7}$

241137 = 137 (mod 1000)

 $k = 1 \pmod{d}$ for any odd $k \in \mathbb{Z}$; $n = 0 \pmod{d}$ for any even $n \in \mathbb{Z}$;

 $3^5 \equiv 3 \pmod{10}$ $3^5 \equiv 3 \pmod{15}$

5 = 3 (mod 24)

(since 35-3= 240 = 10.24 = 15.16),

For any nEZ,

 $n \equiv r \pmod{7}$

for some rEZ with OSr < 7;

For any nEZ and mE/N,

 $n = r \pmod{m}$

for some re Z with O = r < m

(by the division algorithm).
59 1013; 59 (mod 1013),

Properties of "mod m:"

Proposition. Let $a, b, c, d, m \in \mathbb{Z}_{\bullet}$ If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then:

(i) $a + c \equiv b + d \pmod{m}$.

(ii) $a - c \equiv b - d \pmod{m}$.

(iii) $a c \equiv bd \pmod{m}$.

Proof of (i).

Let $a,b,c,d,m \in \mathbb{Z}$; assume $a = b \pmod{m}$ and $c = a \pmod{m}$. Then $m \mid (a-b) \pmod{m}$ $m \mid (c-d)$, so $m \mid ((a-b)+(c-d))$. So $m \mid ((a+c)-(b+a))$, so

a+c = b+2 (mod m).

E.g. $25=4 \pmod{7}$ and $75=-2 \pmod{7}$, so $100=2 \pmod{7}$.

Proof of parts (ii) and (iii): see HW 10.