More induction.

A) A "geometric sum" formula.

Proposition.
For any real number a # 1, and for any nE/N,

$$|+a+a+a^3+...+a| = \frac{a-1}{a-1}$$

Proof. Let a be a real number #1. Let A(n) be the statement in question.

Step 1. Is
$$A(1)$$
 true?
 $1+a^{1} = a^{-1}$

$$|+a = (a+1)(a-1)$$

$$|+a = a+1 \lor 50 A(1) \text{ is frue.}$$

Step 2. Assume A(k):

$$1+a+a^{k} = a^{k+1} = a^{k+1}$$
.

$$= \frac{k+1}{a-1+a-a} + \frac{k+2}{a-1} = \frac{k+2}{a-1} = \frac{k+2}{a-1}$$

so A(k+1) follows. So by induction, A(n) is true \tag{ATIMA

B) A different kind of example.

(Compare with Exercises 12 and 13, HW #8.)

Proposition.

Troposition. Vn∈1N, 24/(5-1).

Proof.

Let A(n) be the statement 24/(5²⁻¹).

Step 1: Is A(1) true?

Does 24 (5²⁻¹1)? 24 | 24, so A(1) is true.

Step 2: Assume A(k): 24 (5^{2k}-1).

To deduce $A(k+1): 24 | (5^{2}-1), the same thing; to the same thing; to make things look we note that
<math display="block">5^{2(k+1)} - 1 = 5^{2k+2} - 1 + 5^{2k} - 5^{2k}$ $= 5^{2k+2} - 1 + 5^{2k} - 5^{2k}$ $= 5^{2k} - 1 + 5^{2k} (5^{2}-1)$ $= 5^{2k} - 1 + 24 \cdot 5^{2k}$

Now 241(5^{2k}1) by the induction hypothesis.

Moreover, 24/24, so 24/24.5^{2k} by S-POP.

Exercise B(i)-3(b). So 24/(5^{2k}1+24.5^{2k}),

by S-POP Exercise B(i)-3(a) So A(k+1) follows.

Therefore, by induction, A(n) is true $\forall n \in IN$. I(C) A surprising fact.

Theorem.

All sneakers are identical.

Proof

Let A(n) be the statement:

Any n sneakers are identical.

We prove, by induction, that A(n) is true the IN.

Step 1: Is A(1) true?
Any one sheaker is identical to Aself, so yes, A(1) is true.

Step 2: Assume A(k): any k sneakers are identical.

Now suppose we have k+1 sneakers. Line them up:

(The second sneaker is part of the first group of k and the last)

By the induction hypothesis, the first k are identical, as are the last k. So all k+1 are identical to the second one, and this to each other.

So A(k) => A(k+1).

So by induction, A(n) is true the IN. ATWAR

Problem with proof: The inductive step fails for k=1. (If k=1, the second sneaker is not part of both the first k and the last k.1