1. Consider the following pair of identical Venn diagrams, each depicting sets A, B, C, and D, where $A \subseteq B$ and $C \subseteq D$.

- (a) In the diagram on the left, shade in the set A D.
- (b) In the diagram on the right, shade in the set B-C.
- (c) Fill in the blank to complete the following theorem, illustrated by the above Venn diagram:

Theorem. For any sets A, B, C, and D, we have

$$A \subseteq B$$
 and $C \subseteq D \Rightarrow A - D \subseteq \underline{B - C}$.

(d) Fill in the blanks to complete the proof of the above theorem.

Proof. Let A, B, C, and D be <u>sets</u>.

Assume $A \subseteq \underline{B}$ and $C \subseteq \underline{D}$. We wish to conclude that $A - D \subseteq \underline{D}$ B-C. To do this, assume $x \in \underline{A-D}$. Then $x \in A$ and $x \notin D$, by definition of set <u>difference</u>

Since $x \in A$, we have $x \in \underline{B}$, by definition of subset.

Now the assumption $C \subseteq D$ is equivalent to the statement $x \in C \Rightarrow \underline{x \in D}$, which is equivalent to the contrapositive statement $x \notin D \Rightarrow \underline{\quad x \notin C \quad}$. So, since $x \notin D$ as already noted, we conclude that $x \notin C$. Therefore, since $x \in B$ as already noted, we have $x \in \underline{B-C}$, by definition of <u>set difference</u>.

We have shown that, if $A \subseteq B$ and $C \subseteq \underline{D}$, then $x \in A - D \Rightarrow \underline{x \in B - C}$. In other words,

$$A \subseteq B \text{ and } C \subseteq D \Rightarrow A - D \subseteq B - C$$
,

and we're done.

ATWMR

(In the last blank above, supply an end-of-proof tagline devised by your group.)

2. Let A, B, C, and D be sets. Show that the converse to the above theorem is false. That is, show (by counterexample) that it's *not* necessarily true that

$$A - D \subseteq B - C \Rightarrow A \subseteq B$$
 and $C \subseteq D$.

Hint: You might want to look at the Venn diagrams above and think about how you could tweak them so that, while it's still true that $A - D \subseteq B - C$, it's no longer true that $A \subseteq B$ and $C \subseteq D$ both still hold. But remember that tweaking the diagrams is not enough, you still need to supply an explicit counterexample.

SOLUTION. For example, let

$$A = \{1, 2, 3, 4, 5\}, \quad B = \{1, 2, 3, 4, 5, 6, 7\}, \quad C = \{1, 2, 7, 10, \pi, 43\}, \quad D = \{1, 2, 10, 17, 53\}.$$

Then

$$A - D = \{3, 4, 5\}$$
 and $B - C = \{3, 4, 5, 6\},\$

so $A-D\subseteq B-C$. But, while it is true that $A\subseteq B$, it's not true that $C\subseteq D$.