|   | Monday, 9/16 -0                                                                      |
|---|--------------------------------------------------------------------------------------|
|   | More on proofs.                                                                      |
|   |                                                                                      |
|   | Part I: A=B.<br>Let A and B be sets. To say A=B is to                                |
|   | SCL                                                                                  |
|   | $A \subseteq B$ and $B \subseteq A$ which is to say                                  |
|   | which is to say                                                                      |
|   | XEH => XED and XEB => XEH                                                            |
|   | which is to say $\times \in A \iff \times \in B$ .                                   |
|   |                                                                                      |
|   | So an A=B proof is a kind of P (=> Q) proof. Template:                               |
| 1 |                                                                                      |
| _ | Theorem.                                                                             |
|   | A=B.                                                                                 |
|   | 1) /et x ∈ A. [ Do stuff to get to: ] Therefore.                                     |
|   | 1) Let $x \in A$ . [Do stuff to get to:] Therefore, $x \in B$ . So $A \subseteq B$ . |
|   |                                                                                      |
| - | 2) Next, let x EB. [ Do stuff to get to: ] Therefore, x EA. So B = A.                |
|   | I herefore, XEH. 50 BEA.                                                             |
|   |                                                                                      |

Example:

Theorem.

For any sets X, Y, and Z,

 $X_n(y_0Z) = (X_nY)_0(X_nZ).$ 

## Proof.

Let X, Y, and Z be sets.

- 1) Assume  $x \in X \cap (Y \cup Z)_o$  Then, by definition of intersection,  $x \in X$  and  $x \in Y \cup Z$ . So by definition of union,  $x \in Y$  or  $x \in Z$ . We consider two cases:
  - (a) x EX and x EY. Then, by definition of intersection, X E X n Y. But then, by definition of union, x E (Xn Y) v (Xn Z).
  - (b)  $x \in X$  and  $x \in Z$ . Then, by definition of intersection,  $x \in X \cap Z$ . But then, by definition of union,  $x \in (X \cap Y) \cup (X \cap Z)$ .

In either case,  $X \in (X_n Y) \cup (X_n Z)$ . So  $X_n(Y \cup Z) \subseteq (X_n Y) \cup (X_n Z)$ .

- 2) Assume  $x \in (X_n Y) \cup (X_n Z)$ . Then, by definition of union,  $x \in X_n Y$  or  $x \in X_n Z$ . We consider two cases.
  - (a)  $x \in X_n Y$ . Then  $x \in X$  and  $x \in Y$  by defin of intersection. But  $x \in Y = Y$   $x \in Y \cup Z$ , by defin of union. So  $x \in X$  and  $x \in Y \cup Z$ , so  $x \in X_n (Y \cup Z)$ , by defin of intersection.
  - (b)  $X \in X \cap Z$ . By the same argument as in (a), but with Y and Z switched, we see (since  $Z \cap Y = Y \cap Z$ ) that  $X \in X \cap (Y \cap Z)$ .

In either case, we have  $x \in X_n(Y_vZ)$ . So  $(X_nY)_v(X_nZ) \subseteq X_n(Y_nZ)$ .

Therefore,  $(X_nY)_{U}(X_nZ) = X_n(Y_UZ)$ .  $\square$ 

Part II: Disproof; counterexamples.

To say a statement P is true is to say it's true no matter what. So to disprove P, it's enough to give a counterexample.

Examples:

1) Are all prime numbers odd?

No: 2 is prime but not odd.

2) Is the following true?

Proposition.

For all sets A, B, and C, A-(BnC) = (A-B)n(A-C).

This is false. Counterexample:

 $A = \mathbb{Z}, \quad B = \mathbb{1} + 3\mathbb{Z}; \quad C = \lambda + 3\mathbb{Z}.$ 

Then BnC=\$. (See p.4 of 5-POP, or Fact 1.5, p. 30 of T-BOP, on the division algorithm.)

So  $A-(BnC)=A=\mathbb{Z}$ .

But  $A-B = 3Z \cup 2+3Z$  and  $A-C = 3Z \cup 1+3Z$ , so

(A-B)n(A-C) = 3 Z + A-(BnC).