An imperfect proof, and a corrected version.

A) Imperfect.

Proposition. Proposition.

If a, b ∈ Z are odd, then so is ab. a= 2m+1 b=2n+1 ab = (2m+1)(2n+1)4mn+2m+2n+1 2(2mn+m+n)+1 2k+1 So ab is odd. B) Correction. Proposition. (Corrections in magenta.)

If a, b ∈ Z are odd, then so is ab. Suppose a, b & I are odd. Then we a=2m+1, b=2n+1, where $m,n\in\mathbb{Z}$. ab = (2m+1)(2n+1)= 4mn+2m+2n+1 = 2(2mn + m + n) + 1= 2k+1, where kE/L. ostional So ab is odd. Therefore, if a, b ∈ I are odd, then so is

In this activity, we interpret " $A \subseteq B$ " proofs as " $P \Rightarrow Q$ " proofs, and use this idea to prove some things about sets.

Fill in all of the blanks in this worksheet. (There are 24 of them, in addition to the "QUES-TION" near the bottom of the next page.)

Recall that the statement " $A \subseteq B$ " means: whenever x is in A, then x is also in B. In other words, $A \subseteq B$ means: if $x \in A$, then $x \in \underline{B}$. So the statement " $A \subseteq B$ " is actually of the form $P \Rightarrow Q$, where P is the statement " $x \in A$ " and Q is the statement $x \in B$."

So: to PROVE a statement of the form " $A \subseteq B$," we do what we usually do in $P \Rightarrow Q$ proofs: We assume P (in this case, we assume that $x \in A$), and then do what's necessary to deduce Q (in this case, to deduce that $x \in B$).

So here's an $A \subseteq B$ proof template:

Theorem. $A \subseteq B$.

Proof. Assume $x \in A$. [Then do what works to conclude:] Therefore, $x \in B$.

ATWMR So $A \subseteq B$.

Recall that "ATWMR," which stands for "And There Was Much Rejoicing," is a kind of goofy way of saying "The proof is done." So "ATWMR" is more or less equivalent to "QED" or a "□." Feel free to use your own end-of-proof tagline, but please, nothing inappropriate!

Complete the following example (which is conceptually pretty straightforward, but a good way to get familiar with this proof strategy):

Theorem. For any sets A, B, and C, we have $A \cap B \subseteq A \cup C$.

Proof. Assume that A, B, and C are sets, and that $x \in A \cap B$. Then, by definition of <u>intersection</u>, we have $x \in A$ and $x \in B$. So in particular, $x \in A$. But then certainly $x \in A$ or $x \in C$, so by definition of union, we have $x \in \underline{A} \cup \underline{C}$.

So $A \cap B \subseteq A \cup C$.

 \mathbf{ATWMR}

(In the last blank above, supply an end-of-proof tagline devised by your group.) Let's do another proof.

(continued on the next page)

Theorem. For any sets A and B, we have $A - B \subseteq (A \cup B) - (A \cap B)$.

[Remark: We haven't done Venn diagrams yet (we will shortly). But if you're familiar with the notion of a Venn diagram, you might want to draw one to help illustrate this theorem.]

Proof. Let $x \in \underline{A-B}$. To deduce that $x \in (A \cup B) - (A \cap B)$, we need to demonstrate two things: first, that $x \in A \cup B$, and second, that $x \notin \underline{A \cap B}$. We do so as follows:

- 1. First, we show $x \in A \cup B$. Since $x \in A B$ by assumption, we have $x \in A$ and $x \not\in B$. In particular, $x \in A$. It follows that $x \in A$ or $x \in B$, so by definition of union, $x \in A \cup B$.
- 2. Second, we show $x \notin \underline{A \cap B}$. Since $x \in A B$ by assumption, we have $x \in A$ and $x \notin B$. In particular, $x \notin \underline{B}$. But if $x \notin B$, then certainly x is not in both A and B, so $x \notin A \underline{\cap} B$.

To summarize, we've shown that, if
$$x \in \underline{A-B}$$
, then $x \in (A \cup B) - (A \cap B)$. So $\underline{A-B} \subseteq \underline{(A \cup B) - (A \cap B)}$.

QUESTION: without actually writing down a proof, how would you argue that, from the above theorem, we can also deduce that $B - A \subseteq (A \cup B) - (A \cap B)$? Answer with a sentence or two in the space below. Hint: it's not hard to show (and you don't have to show) that $A \cup B = B \cup A$ and $A \cap B = B \cap A$.

We proved that, for sets A and B, $A - B \subseteq (A \cup B) - (A \cap B)$. Switching the names A and B (they're just names), we get

$$B - A \subseteq (B \cup A) - (B \cap A). \tag{*}$$

But, as just noted, $B \cup A = A \cup B$ and $B \cap A = A \cap B$, so (*) gives

$$B - A \subseteq (A \cup B) - (A \cap B).$$

Fill in these last three blanks: from the facts that $A - B \subseteq (A \cup B) - (A \cap B)$ and $B - A \subseteq (A \cup B) - (A \cap B)$, and from the definition of union, we can conclude that

$$(A-B) \cup (B-A) \subseteq (A \cup B) - (A \cap B).$$

In fact, the symbol " \subseteq " here can be replaced by "=." We'll discuss this further soon.