Solutions to Selected Exercises, HW #3

Assignment:

- S-POP, Section B(i): Exercises B(i)-4 through B(i)-10.
- S-POP, Section B(ii): Exercises B(ii)-5 through B(ii)-7.
- T-BOP Chapter 8 (page 171): Exercises 14, 16.

S-POP, Part B(i)

Exercise B(i)-5. Supply a direct proof of Proposition B(i)- 2_E .

SOLUTION:

Theorem. If m^2 is an odd number, then m is an odd number.

Proof. Let m^2 be an odd number; write $m^2 = 2\ell + 1$, where $\ell \in \mathbb{Z}$. Now every number is either even or odd, so we can write m = 2k + r, where $k \in \mathbb{Z}$ and either r = 0 or r = 1. But then

$$m^2 = (2k+r)^2 = 4k^2 + 4kr + r^2$$

where r is either 0 or 1. Setting our two expressions for m^2 equal, we get

$$4k^2 + 4kr + r^2 = 2\ell + 1.$$

or, solving for r^2 ,

$$r^{2} = 2\ell + 1 - (4k^{2} + 4kr) = 2(\ell - 2k^{2} - 2kr) + 1 = 2n + 1,$$

where $n \in \mathbb{Z}$. So r^2 is odd, so r can't equal 0 (because $0^2 = 0$ is even), so r = 1, so m = 2k + 1, so m is odd. \square

Exercise B(i)-6. Using contraposition prove that, if n is not divisible by 4, then n is not divisible by 12.

SOLUTION:

Proof. Suppose n is divisible by 12. Then n = 12k for some $k \in \mathbb{Z}$. But then, since $12 = 4 \cdot 3$, we have $n = (4 \cdot 3) \cdot k = 4 \cdot (3k) = 4m$, where $m \in \mathbb{Z}$. So n is divisible by 4.

So if n is not divisible by 4, then n is not divisible by 12. \square

Exercise B(i)-8. Consider the converse to the statement of Exercise B(i)-3(a). Is this converse statement true? If so, prove it. If not, show that it's false by counterexample.

SOLUTION:

The converse is FALSE. For example, let a = 7, b = 10, and c = 11. Then a|(b+c) (since 7|21), but $a\not|b$ and $a\not|c$.

Exercise B(i)-9. Use the method outlined in Proposition B(i)-3 to show that an integer n is divisible by 6 if, and only if, n is both even and divisible by 3.

SOLUTION:

Proof. Suppose n is divisible by 6. Then n=6k where $k \in \mathbb{Z}$. Since $6=2 \cdot 3=3 \cdot 2$, we therefore have $n=(2 \cdot 3) \cdot k=2 \cdot (3k)=3\ell$ where $\ell \in \mathbb{Z}$, and $n=(3 \cdot 2) \cdot k=3 \cdot (2k)=3m$ where $m \in \mathbb{Z}$. So n is even and divisible by 3.

Next, suppose n is even and is divisible by 3. Since n is divisible by 3, we have n = 3k for some $k \in \mathbb{Z}$. But then, since n is even, k must be even, otherwise n would be the product of two odd numbers (3 and k), and would therefore be odd, by Exercise B(i)-1(b). So k = 2m for some $m \in \mathbb{Z}$, so n = 3(2m) = 6m, so n is divisible by 6.

So n is divisible by 6 if, and only if, n is both even and divisible by 3. \square

S-POP, Part B(ii)

Exercise B(ii)-5. Using the strategy of Proposition B(ii)-2, prove that

$$\mathbb{Z} = 3\mathbb{Z} \cup (1 + 3\mathbb{Z}) \cup (2 + 3\mathbb{Z}).$$

SOLUTION:

- 1) First, we show that $\mathbb{Z} \subseteq 3\mathbb{Z} \cup (1+3\mathbb{Z}) \cup (2+3\mathbb{Z})$: let $m \in \mathbb{Z}$. By the division algorithm, we have m = 3q + r where $q, r \in \mathbb{Z}$ and either r = 0, r = 1, or r = 2. In the first case we have m = 3q, so $m \in 3\mathbb{Z}$. In the second case we have m = 3q + 1, so $m \in 1+3\mathbb{Z}$. In the third case we have m = 3q + 2, so $m \in 2+3\mathbb{Z}$. So either $m \in 3\mathbb{Z}$ or $m \in 1+3\mathbb{Z}$ or $m \in 2+3\mathbb{Z}$, so by definition of union, $m \in 3\mathbb{Z} \cup (1+3\mathbb{Z}) \cup (2+3\mathbb{Z})$. So $\mathbb{Z} \subseteq 3\mathbb{Z} \cup (1+3\mathbb{Z}) \cup (2+3\mathbb{Z})$.
- 2) Next, we show that $3\mathbb{Z} \cup (1+3\mathbb{Z}) \cup (2+3\mathbb{Z}) \subseteq \mathbb{Z}$: let $m \in 3\mathbb{Z} \cup (1+3\mathbb{Z}) \cup (2+3\mathbb{Z})$. Then $m \in 3\mathbb{Z}$ or $m \in 1+3\mathbb{Z}$ or $m \in 2+3\mathbb{Z}$. In each case, $m \in \mathbb{Z}$, since each of these three sets is a set of integers. So $3\mathbb{Z} \cup (1+3\mathbb{Z}) \cup (2+3\mathbb{Z}) \subseteq \mathbb{Z}$.

Therefore, $\mathbb{Z} = 3\mathbb{Z} \cup (1 + 3\mathbb{Z}) \cup (2 + 3\mathbb{Z})$.

T-BOP, Chapter 8

Exercise 16.

Theorem. If A, B, and C are sets, then $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

Proof. Suppose A, B, and C are sets.

1) Let $x \in A \times (B \cup C)$. Then by definition of Cartesian product, x = (a, d), where $a \in A$ and $d \in B \cup C$. By definition of union, $d \in B$ or $d \in C$. In the first case, since $a \in A$, we have $x \in A \times B$, so certainly $x \in A \times B$ or $x \in A \times C$, so by definition of

union, $x \in (A \times B) \cup (A \times C)$. In the second case, since $a \in A$, we have $x \in A \times C$, so certainly $x \in A \times B$ or $x \in A \times C$, so by definition of union, $x \in (A \times B) \cup (A \times C)$. So in either case, $x \in (A \times B) \cup (A \times C)$.

So
$$A \times (B \cup C) \subseteq (A \times B) \cup (A \times C)$$
.

2) Next, let $x \in (A \times B) \cup (A \times C)$. Then by definition of union, $x \in A \times B$ or $x \in A \times C$. In the first case, x = (a, b), where $a \in A$ and $b \in B$. But then certainly $b \in B$ or $b \in C$, so $b \in B \cup C$ by definition of union, so $x \in A \times (B \cup C)$. In the second case, x = (a, c), where $a \in A$ and $c \in C$. But then certainly $c \in B$ or $c \in C$, so $c \in B \cup C$ by definition of union, so $x \in A \times (B \cup C)$. So in either case, $x \in A \times (B \cup C)$.

So
$$(A \times B) \cup (A \times C) \subseteq A \times (B \cup C)$$
.

Therefore,
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
.