1. Consider the following pair of identical Venn diagrams, each depicting sets A, B, and C, where $A \subseteq B$.

- (a) In the diagram on the left, shade in the set C B.
- (b) In the diagram on the right, shade in the set C A.
- (c) Fill in the blank to complete the following theorem, illustrated by the above Venn diagram:

Theorem. For any sets A, B, and C, we have

$$A \subseteq B \Rightarrow \underline{C - B \subseteq C - A}$$
.

(d) Fill in the blanks to complete the proof of the above theorem.

Proof. Let A, B, and C be <u>sets</u>.

Assume $A \subseteq \underline{B}$. We wish to conclude that $\underline{C-B \subseteq C-A}$. To do this, assume $x \in \underline{C-B}$. Then $x \in C$ and $x \notin B$, by definition of $\underline{\text{set difference}}$. Now the assumption $A \subseteq B$ is equivalent to the statement $x \in A \Rightarrow \underline{x \in B}$, which is equivalent to the contrapositive statement $\underline{x \notin B \Rightarrow x \notin A}$. So, since $A \subseteq B$ and $x \notin B$, we conclude that $\underline{x \notin A}$. Therefore, since $x \in C$ as already noted, we have $x \in \underline{C-A}$, by definition of $\underline{\text{set difference}}$.

We have shown that, if $A \subseteq B$, then $x \in C - B \Rightarrow \underline{x \in C - A}$. In other words,

$$A \subseteq B \Rightarrow \underline{C - B \subseteq C - A},$$

and we're done.

 \mathbf{ATWMR}

(In the last blank above, supply an end-of-proof tagline devised by your group.)

2. Given sets A, B, and C, is it always true that

$$(C \cup B) - A = C \cup (B - A)?$$

If so, prove it. If not, give a counterexample.

SOLUTION. This is false. For example, let

$$A = \{1, 2, 3, 4, 5\},$$
 $B = \{3, 4, 5, 6\}$ $C = \{1, 2, 10, \pi, 73\}.$

Then $C \cup B = \{1, 2, 3, 4, 5, 6, 10, \pi, 73\}$, so

$$(C \cup B) - A = \{6, 10, \pi, 73\},\$$

while $B - A = \{6\}$, so

$$C \cup (B - A) = \{1, 2, 6, 10, \pi, 73\}.$$

Note that, although these sets aren't equal, it is true, in this case, that

$$(C \cup B) - A \subseteq C \cup (B - A).$$

In fact, this is always true, as you can convince yourself with a quick proof.