1. Consider the following pair of identical Venn diagrams, each depicting sets A, B, and C, where $A \subseteq B$.

- (a) In the diagram on the left, shade in the set C B.
- (b) In the diagram on the right, shade in the set C-A.
- Fill in the blank to complete the following theorem, illustrated by the above Venn diagram:

Theorem. For any sets A, B, and C, we have

$$A \subseteq B \Rightarrow \underline{\hspace{2cm}}$$

(d) Fill in the blanks to complete the proof of the above theorem.

Proof. Let A, B, and C be _____.

Assume $A\subseteq$ _____. We wish to conclude that _____. To do this, assume $x \in \underline{\hspace{1cm}}$. Then $x \in C$ and $x \notin B$, by definition of $\underline{\hspace{1cm}}$. Now the assumption $A \subseteq B$ is equivalent to the statement $x \in A \Rightarrow \underline{\hspace{1cm}}$, which is equivalent to the contrapositive statement ______. So, since $A \subseteq B$ and $x \notin B$, we conclude that ______. Therefore, since $x \in C$ as already noted, we have $x \in \underline{\hspace{1cm}}$, by definition of $\underline{\hspace{1cm}}$.

We have shown that, if $A \subseteq B$, then $x \in C - B \Rightarrow$ ______. In other words,

$$A \subseteq B \Rightarrow \underline{\hspace{1cm}},$$

and we're done.

(In the last blank above, supply an end-of-proof tagline devised by your group.)

2. Given sets A, B, and C, is it always true that

$$(C \cup B) - A = C \cup (B - A)?$$

If so, prove it. If not, give a counterexample.