Wednesday, 4/17-1

The binomial theorem, continued.

$$\begin{pmatrix} k \\ j \end{pmatrix} + \begin{pmatrix} k \\ j-1 \end{pmatrix} = \begin{pmatrix} k+1 \\ j \end{pmatrix}.$$

Proof by counting.

Since the set $S = \{0,1,2,...,k\}$ has k+l elements, we know, by definition of $\binom{k+1}{k}$, that S has $\binom{k+1}{k}$ subsets of size-j. If we can show that the number of size-j subsets of S is $\binom{k}{k} + \binom{k}{k-1}$, we'll be done.

But any size-j subset of 5 is of exactly one of the following types:

- (a) Subots that dou't contain O. Here, we must choose all j elements from the k elements not equal to O. So there are (i) such subsets.
- (b) Subsets that contain O. Once O is chosen, j-1 elements must be chosen from the remaining k elements of S. So there are (f-1) subsets of this type.

By (a) and (b),
$$|5| = {k \choose j} + {k \choose j-1}$$
, and we're done.

Now we prove:

The Biromal Theorem. For nell and a, bER,

$$(a+b)^{n} = \binom{n}{0}a^{n} + \binom{n}{1}a^{n-1}b^{n} + \binom{n}{0}a^{n-2}b^{n} + \binom{n}{0}a^{n-1}b^{n} + \binom{n}{0}b^{n}$$

$$= \sum_{j=0}^{n} \binom{n}{j}a^{n-j}b^{j}$$

SKETCH of proof (by induction).

Let A(n) be the given statement.

Step 1. Is
$$A(1)$$
 true?

$$(a+b) \stackrel{?}{=} (b)a + (b)b^{1}$$

$$a+b = a+b \checkmark$$
So $A(1)$ is true.

Step 2 Rather than proving that A(k) => A(k+1), let's illustrate it by showing that A(4) => A(5).

$$(a+b)^{4} = (4)a^{4} + (4)a^{3}b + (4)a^{3}b^{4} + (4)a^{3}b^{4} + (4)a^{3}b^{4}$$
It follows that

$$= \binom{4}{0}a^{5} + \binom{4}{1}a^{4}b + \binom{4}{3}a^{3}b^{3} + \binom{4}{3}a^{3}b^{3} + \binom{4}{4}a^{4}b^{4} + \binom{4}{4}a^{5}b^{3} + \binom{4}{4}a^{5}b^{4} + \binom{4}{4}a^{5}b^{5} + \binom{4}{3}a^{5}b^{4} + \binom{4}{4}a^{5}b^{5} + \binom{4}{3}a^{5}b^{4} + \binom{4}{3}a^{5}b^{5} + \binom{5}{3}a^{5}b^{5} + \binom{5}{3}a^{5}b^{5} + \binom{5}{3}a^{5}b^{5} + \binom{4}{3}a^{5}b^{5} + \binom{4}{3}a^{5}b^{5} + \binom{5}{3}a^{5}b^{5} + \binom{5}{3}a^{5}b^{5} + \binom{4}{3}a^{5}b^{5} + \binom{4}{3}a^{5$$

(we added using the lemma). Since $\binom{4}{0} = \binom{5}{0}$ and $\binom{4}{4} = \binom{5}{5}$ (all of these equal one), the above sum equals $(5)a^{5}+(5)a^{4}b+(5)a^{3}b^{4}+(5)a^{3}b^{4}+(5)b^{5}$ so A(5) follows.