Lists, continued.

Recall: a list is an ordered sequence of items.

Gudelmes/principles for counting lists:

- 1. Multiplication principle (MP):

 (a) If Thing I can be done in m ways and, for each of these ways, Thing 2 can be done in n ways, then Things I and 2 together can be done in mn ways.
 - (b) The number of length-k lists that can be made from n items is

 (i) nk allowing repetition;

 (ii) $n(n-1)(n-2)\cdots(n-k+1)*$ disallowing repetition.

*Sometimes denoted nPk or P(n, k).
Note: a length-k list from n items,
without repetition, is called a k-permutation
of n.

2)(a) Addition principle (AP):

If Thing I can be done in m ways and Thing 2 can be done in n ways, then the number of ways of doing Thing I or Thing 2 is m+h, provided you're not counting twice.

(b) Inclusion-Exclusion Principle (IEP): If you are counting twice, subtract

to compensate.

3) Subtraction principle (SP):

number of lists with a property P

= total number of lists

- number without property P.

Example

How many 5-card lists can be dealt from a standard 52-card deck it:

(A) all have the same suit;

(B) Exactly one card is a 3;

(c) No cord is a 3;

(D) At least one card is a 3;

(E) All have the same suft or no card is a 3 (or both).

Solution.

(A) The first card can be anything; its suit determines the suit of the other cards. So there are

52.12.11.10.9=617,760 such lists.

(B) $\frac{3}{4} \cdot 48 \cdot 47 \cdot 46 \cdot 45$ lists where 3 is the first card, $48 \cdot 4 \cdot 47 \cdot 46 \cdot 45$ where it's the second, etc. Total:

5(4.48.47.46.45) = 93,398,400 such lists.

(we've used MP(a) and AP(a).)

(c) 48 cards total are not 3's. So there are 48.47.46.45.44 = 205,476,480
lists with no 3's.
(We've used MP(a) or, equivalently, MP(b)(ii).)

(D) card lists those with no 3's.

52.51.50.49.48-49.47.46.45.44 = 106,398,720 such lists, by MP(a) (or b(ii)) together with 5P.

(E) The number of lists where all cords have the same suit and no card is a 3 is

48.11.10.9.8 = 380,160, by MP(a).

So, by the answers to parts (A) and (C) above, and by IEP, the number of lists with all cards the same suit or with no 3's is

617,760+205,476,480-380,160

= 205,714,080.