Limits of Sequences.
Definition. Let
Definition. Let ×1, ×2, ×3,
be a sequence of real numbers. We say
$\lim_{n \to \infty} x_n = L$
In $x_n = L$ of, $\forall \varepsilon > 0$, $\exists R \varepsilon R : n > R \Rightarrow x_n - L < \varepsilon$.
* If we choose in large enough (larger than some suitable real number R),
some suitable real number K),
then
We can assure that Xn is as close as
we want to L (we can assure that xn-L
is within a preseribed tolerance E).
Example 1:
Example 1:
$\frac{P_{\text{roposition}}}{n \to \infty} = 0.$
11 = O
n→∞ n²
•
Proof.
Let E>O. I Scratchwork NOT part of
Let E>0. I Scratchwork, NOT part of the proof: we want to assure that
\\ \frac{1}{10} - 0 \leq 6

This is the same as

$$\frac{1}{n^2} \angle E$$
 (since $n \in N$, so $n^2 > 0$).

Solve for n:
$$n^2 > \frac{1}{\epsilon}$$

$$n > \frac{1}{\sqrt{\epsilon}}.$$

50, as long as n> /VE, we'll have what we need. This tells us how big R needs to be.
Now write this:]

Suppose
$$R = \sqrt{\epsilon}$$
.

Then

 $n > R \Rightarrow \left| \frac{1}{n^2} - 0 \right| = \frac{1}{h^2} < \frac{1}{R^2}$
 $= \frac{1}{(1/\sqrt{\epsilon})^2} = \frac{1}{1/\epsilon} = \epsilon$.

So
$$\lim_{n\to\infty}\frac{1}{n}=0$$
. ATWMR

The point is: a limit proof is constructive in that, for any given E>D, we prove an RE/R with the desired property exists by constructing such an R.

Limit proof template:



