Morday, 2/26-0 Proofs with quantifiers. A) 3xEX: Q(x) One way of proving such a statement is by construction: produce an explicit XEX satisfying Proof template: Let x = [write down an xEX that works. Then demonstrate that it works]. So Q/x). Proposition 1. 2n

= In E/N, 2+1 is composite (net prime).

Proof. 25 Example: $\frac{1}{1}$ Let n=5. Then $2^{2}+1=2^{3}+1=4294967297$ =641.6700417, so $2^{2}+1$ is composite. Not all existence proofs are constructive:

Proposition 2.

The Eprime numbers 3, p>10.

Proof We know (to be proved later) that I infinitely many primes. List them in increasing order: P1) P2) P3...

Each prime pn is at least one larger than the

previous one (since primes are integers), so eventually, pn > 1010.

[For example, choosing n = 10 + 1 will work.] (B) $\forall \times \in X$, Q(x). This statement is the same as $x \in X = > Q(x).$ Proof template: Proposition. VXEX, Q(x). Assume x & X. [Then do what's necessary to show:] Therefore, Q(x). So YXEX, Q(x), (optional) Example (see HW5, 5-POP Exercise Bliii)-1): Proposition 3. $\forall m \in \mathbb{Z}, 6 | m(m+1)(m+2).$ Assume m E Z. By S-POP Exercise Bli)-9, con integer n is divisible by 6 iff n is even and divisible by 3. So it will suffice to show that m(m+1)(m+2) is even and is divisible 1) To show m(m+1)(m+2) is even, write

m= 2ktr, where k,re Z and either k=0 or k=1. We consider two cases:

$$m(m+1)(m+2) = (2k+1)(2k+2)(2k+3)$$

= 2.((2k+1)(k+1)(2k+3)),

so m is even.

In either case (r=0 or r=1), m(m+1)(m+d) is even.

algorithm to write m= 31+r

where $l, r \in \mathbb{Z}$ and l = 0, 1, or 2. We consider three cases:

a)
$$r=0$$
. Then $m=3l$, so $m(m+1)(m+2)=...$ [DIY]

In each case (r=0,1, or 2), ... [014].

So m(m+1)(m+2) is both even and divisible by 3. Therefore, IDIYI.