Wednesday, 2/14 (1)

Quantifiers.

The symbols I and I are called quantifiers.

(1) I is the existential quantifier; if means "there exists" or "for some" or "for at least one."

Also, if Q(x) is a statement about an object x, and A is a set, then $\exists x \in A : Q(x)$ means Q(x) holds for at least one element of A.

Examples: 3xEM: x>42 3xEM: x<0 is true.

(d) I is the universal quantifier; it means "for all" or "for every."

Also, if Q(x) is a statement regarding an object x, and A is a set, then $\forall x \in A: Q(x)$

means Q(x) holds for every X ∈ A.

Examples: $4 \times \epsilon / N$: $\times > 42$ is false. AXE W: X 30 is true.

(3) (a) We can string quantifiers together. Examples:

TXEIR, TYEIR: x>y is true.

TXEIR, TYEIR: x>y is false.

(note that order watters!)

(b) We can negate statements with quantifiers. In particular,

~ (] x e A : Q(x))

is equivalent to $\forall x \in A : \sim Q(x)$

~(YXEA:Q(X))

is equivalent to JXEA:~Q(X).

(4) Examples! True or False, and why?

(a) ~ (Yne/N, n=n)

(b) ~ (] nE/N na<n)

(d) HyEIR, EXEIR: X>Y

(a) EXEIR, HYEIR: X>Y

(e) ~(EYEIR, EXEIR: 1x-y1<0)

Also, rewrite this statement without using V.

SOLUTION.

(a) This statement is equivalent to $\exists n \in IN : n^2 \neq n$ which is true (take n = 2).

(h) Equivalent to $\forall n \in IV, n^2 > n,$ which is true. (Proof: if nell, then n>1.

Multiply by n to get na >n.)

- (c) True. Proof: given $x \in IR$, let y = x 1.
 Then x > y.
- (d) False. There exists no real number x that's revery real number ye
- (e) ~ (JyEIR, JXEIR: 1x-y/x0)

 is equivalent to

 YYEIR, ~ (JXEIR: /x-y/x0)

 which is equivalent to

 YYEIR, YXEIR, 1x-y/20,

 which is true (since 12/20 for all real numbers 2).