A = B proofs.

Recall: to say that $A \subseteq B$ is to say that, if $x \in A$, then $x \in B$. That is: $A \subseteq B$ is a convalent

XEA => XEB.

That is, an "A=B" statement is a kind of "P=>Q" statement.

A = B proof template:

Theorem. A = B.

SSUME XEA.

[Then 20 what works to show that:]

Therefore, XEB.

So A = B.

Examples.

Theorem 1. 3+12 Z = 3+6 Z.

Proofo

Let x € 3+12 Z. Then x = 3+12k for some kE Z. But 12=6.2, so

x = 3 + (6.a)k

= 3 +6·(2k) = 3+6m,

where m= 2kez. So x = 3+6Z.

So 3+122 = 3+62.

Theorem 2.

For any sets A, B, and C,

AnB = (Auc)nB.

Proof.

Let $x \in A \cap B$. Then $x \in A$ and $x \in B$. But since $x \in A$, we have $x \in A$ or $x \in C$, so $x \in A \cup C$, by definition of union. So $x \in A \cup C$ and $x \in B$. But then, by definition of intersection, $x \in (A \cup C) \cap B$.

SO AnB= (AUC), B.

П

Theorem 3.

For any sets X, Y, and Z, if $X \subseteq Z$ and $Y \subseteq Z$, then $X \cup Y \subseteq Z$.

Proof.

Let X, Y, and Z be sets; assume X \(Z\) and \(Y \) \(Z \).

Now assume $x \in X \cup Y$. Then $x \in X$ or $x \in Y$. We consider these cases separately:

- 1. If x∈X then, since X ≤ Z, we have x ∈ Z.
- a. If x ∈ Y then, since Y ∈ Z, we have x ∈ Z.

So in all cases, x ∈ Z. So XuYeZ.

On Friday, we should that, for any sets A and B,

A-B = (AUB)- (AnB)

B-A ⊆ (A∪B)-(AnB).

From Theorem 3, it follows that

Theorem 4. For any sets A and B,

 $(A-B) \cup (B-A) \subseteq (A \cup B) - (A_{n}B)$.

COOL FACT: the "=" in Theorem 4 may

Theorem 5. For any sets, A and B, $(A \cup B) = (A \cap B) \subseteq (A - B) \cup (B - A)$.

Proof: later.

Finally note that, by Theorems 4 and 5 together, we have

Theorem 6. For any sets A and B,

 $(A-B)\cup(B-A)=(A\cup B)-(A\cap B).$