Solutions to Selected Exercises, HW #7

Assignment:

T-BOP Section 10.5, pages 195–196: Exercises 12, 15, 25, 26, 28.

Exercise 12. Prove that $9|(4^{3n} + 8)$ for every integer $n \ge 0$.

Proof. Let A(n) be the statement $9|(4^{3n} + 8)$.

Step 1: Is A(0) true?

$$4^{3\cdot 0} + 8 = 9,$$

and 9|9, so A(0) is true.

Step 2: Assume $A(k): 9|(4^{3k}+8)$.

Then

$$4^{3(k+1)} + 8 = 4^{3k+3} + 8$$

$$= 4^{3k+3} + 8 + 4^{3k} - 4^{3k}$$

$$= 4^{3k} + 8 + 4^{3k+3} - 4^{3k}$$

$$= 4^{3k} + 8 + 4^{3k}(4^3 - 1)$$

$$= 4^{3k} + 8 + 63 \cdot 4^{3k}.$$

Now $9|(4^{3k}+8)$ by the induction hypothesis, and 9|63 since $63=9\cdot7$. So, by Exercise B(i)-3 in S-POP, $9|(4^{3k}+8+63\cdot4^{3k})$; that is, $9|4^{3(k+1)}+8$. So A(k+1) follows.

So by the principle of mathematical induction, A(n) is true for every integer $n \geq 0$.

Exercise 28. Concerning the Fibonacci sequence, prove that

$$F_2 + F_4 + F_6 + F_8 + \dots + F_{2n} = F_{2n+1} - 1.$$

Proof. Let A(n) be the given statement concerning Fibonacci numbers.

Step 1: Is A(1) true?

$$F_{2\cdot 1} \stackrel{?}{=} F_{2\cdot 1+1} - 1$$

 $F_2 \stackrel{?}{=} F_3 - 1$
 $1 = 2 - 1$

so A(1) is true.

Step 2: Assume

$$A(k): F_2 + F_4 + F_6 + F_8 + \dots + F_{2k} = F_{2k+1} - 1.$$

Then by the induction hypothesis and the recurrence relation $F_{n+2} = F_{n+1} + F_n$,

$$F_2 + F_4 + F_6 + F_8 + \dots + F_{2(k+1)} = (F_2 + F_4 + F_6 + F_8 + \dots + F_{2k}) + F_{2(k+1)}$$

$$= F_{2k+1} - 1 + F_{2(k+1)}$$

$$= F_{2k+2} + F_{2k+1} - 1$$

$$= F_{2k+3} - 1$$

$$= F_{2(k+1)+1} - 1,$$

so A(k+1) follows. Therefore, $A(k) \Rightarrow A(k+1)$.

So by the principle of mathematical induction, A(n) is true $\forall n \in \mathbb{N}$. \square