Solutions to Selected Exercises, HW #6

Assignment:

- S-POP Part B(v) : Exercises B(v) 1, 2, 3, 6.
- T-BOP Chapter 10 (page 195): Exercises 3, 4, 8.

S-POP, Part B(v)

Exercise 2. Use mathematical induction to prove that, for any positive integer n,

$$1+3+5+7+\cdots+2n-1=n^2$$
.

That is, the sum of the first n odd positive integers is n^2 .

Proof. Let A(n) be the statement

$$1+3+5+7+\cdots+2n-1=n^2$$
.

Step 1: Is A(1) true?

$$1 = 1^2$$
.

so A(1) is true.

Step 2: Assume

$$A(k): 1+3+5+7+\cdots+2k-1=k^2.$$

Then

$$1+3+5+7+\cdots+2(k+1)-1 = 1+3+5+7+\cdots+2k-1+2(k+1)-1$$
$$= k^2+2(k+1)-1$$
$$= k^2+2k+1$$
$$= (k+1)^2,$$

so A(k+1) follows. Therefore, $A(k) \Rightarrow A(k+1)$.

So by the principle of mathematical induction, A(n) is true $\forall n \in \mathbb{N}$. \square

Exercise 3. Use mathematical induction to prove that, for any positive integer n,

$$\frac{d}{dx}x^n = nx^{n-1}$$

(pretend you didn't already know this, although it's OK to assume it's true for n = 1). Hint: for the inductive step, use the product rule.

Proof. Let A(n) be the statement

$$\frac{d}{dx}x^n = nx^{n-1}.$$

Step 1: Is A(1) true?

$$\frac{d}{dx}x^{1} = \frac{d}{dx}x = 1 = 1 \cdot x^{1-1},$$

so A(1) is true.

Step 2: Assume

$$A(k): \frac{d}{dx}x^k = kx^{k-1}.$$

Then by the product rule and the induction hypothesis,

$$\frac{d}{dx}x^{k+1} = \frac{d}{dx}x^k \cdot x$$

$$= \left(\frac{d}{dx}x^k\right) \cdot x + \left(\frac{d}{dx}x\right) \cdot x^k$$

$$= (kx^{k-1}) \cdot x + (1) \cdot x^k$$

$$= kx^k x + x^k = (k+1)x^k,$$

so A(k+1) follows. Therefore, $A(k) \Rightarrow A(k+1)$.

So by the principle of mathematical induction, A(n) is true $\forall n \in \mathbb{N}$. \square

Exercise 6. Let A_n be the statement

$$1+2+3+\cdots+n=\frac{(2n+1)^2}{8}$$
.

Prove that if A(k) is true for any positive integer k, then so is A(k+1). Is A(n) true for all positive integers n? Explain your answer.

Solution. First we prove that $A(k) \Rightarrow A(k+1)$. So assume

$$A(k): 1+2+3+\cdots+k = \frac{(2k+1)^2}{8}.$$

Then

$$1+2+3+\dots+(k+1) = (1+2+3+\dots+k)+k+1$$

$$= \frac{(2k+1)^2}{8}+k+1 = \frac{(2k+1)^2}{8}+\frac{8(k+1)}{8}$$

$$= \frac{(2k+1)^2+8(k+1)}{8} = \frac{4k^2+4k+1+8k+8}{8} = \frac{4k^2+12k+9}{8}$$

$$= \frac{(2k+3)^2}{8} = \frac{(2(k+1)+1)^2}{8},$$

so A(k+1) follows. Therefore, $A(k) \Rightarrow A(k+1)$.

However, A(n) is not true for all $n \in \mathbb{N}$. For example, A(1) is the statement 1=9/8, which is false.

The point of this exercise is that it's not enough just to show that $A(k) \Rightarrow A(k+1)$. You also need to prove the base case A(1). Without that, the statement A(n) might not even be true for a single positive integer n.

T-BOP Chapter 10 (page 195)

Prove the following statements with either induction, strong induction, or proof by smallest counterexample.

Exercise 4. If $n \in N$, then

$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + 4 \cdot 5 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}.$$

Proof. Let A(n) be the statement of the proposition.

Step 1: Is A(1) true?

$$1 \cdot 2 \stackrel{?}{=} \frac{1(1+1)(1+2)}{3}$$
$$2 = 2.$$

so A(1) is true.

Step 2: Assume

$$A(k): 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + 4 \cdot 5 + \dots + k(k+1) = \frac{k(k+1)(k+2)}{3}.$$

Then

$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + 4 \cdot 5 + \dots + (k+1)(k+1+1)$$

$$= (1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + 4 \cdot 5 + \dots + k(k+1)) + (k+1)(k+2)$$

$$= \frac{k(k+1)(k+2)}{3} + (k+1)(k+2) = \frac{k(k+1)(k+2) + 3(k+1)(k+2)}{3}$$

$$= \frac{(k+1)(k+2)(k+3)}{3} = \frac{(k+1)((k+1)+1)((k+1)+2)}{3},$$

so A(k+1) follows. Therefore, $A(k) \Rightarrow A(k+1)$.

So by the principle of mathematical induction, A(n) is true $\forall n \in \mathbb{N}$. \square

Exercise 8. If $n \in N$, then

$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}.$$

Proof. Let A(n) be the statement of the proposition.

Step 1: Is A(1) true?

$$\frac{1}{2!} \stackrel{?}{=} \frac{1}{(1+1)!}$$
$$\frac{1}{2} = \frac{1}{2}.$$

so A(1) is true.

Step 2: Assume

$$A(k): \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{k}{(k+1)!} = 1 - \frac{1}{(k+1)!}.$$

Then

$$\begin{aligned} &\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{k+1}{((k+1)+1)!} \\ &= \left(\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{k}{(k+1)!}\right) + \frac{k+1}{((k+1)+1)!} \\ &= 1 - \frac{1}{(k+1)!} + \frac{k+1}{(k+2)!} = 1 - \frac{k+2}{(k+2)!} + \frac{k+1}{(k+2)!} \\ &= 1 + \frac{-(k+2) + k + 1}{(k+2)!} = 1 - \frac{1}{(k+2)!}, \end{aligned}$$

so A(k+1) follows. (To get a common denominator, we have used the fact 1/(k+1)! = (k+2)/(k+2)!.) Therefore, $A(k) \Rightarrow A(k+1)$.

So by the principle of mathematical induction, A(n) is true $\forall n \in \mathbb{N}$. \square