
Math 2001–004: Introduction to Discrete Mathematics Spring 2024

Solutions to Selected Exercises, HW #5

Assignment:

• T-BOP Section 2.7, page 55: Exercises 1–5, 9, 10.

• Supply a negation, in quantifier form, of each of the Exercises 3–5, 9, and 10
in T-BOP, Section 2.7. Then state whether your negated statement is true or
false.

• S-POP Part B(iii), pages 8–9: Exercises B(iii)-1 through B(iii)-5.

T-BOP, Section 2.7

Write the following as English sentences. Say whether they are true or false.

Exercise 2. ∀x ∈ R,∃n ∈ N, xn ≥ 0: For any real number x, there is a natural
number n such that xn ≥ 0. True: no matter what x is, take n = 2; x2 ≥ 0 always.

Exercise 4. ∀x ∈P(N), X ⊆ R: Every subset of N is a subset of R. True: every
set of integers is also a set of real numbers.

Exercise 10. ∃m ∈ Z,∀n ∈ Z,m = n + 5: There is some integer m = n + 5 for
every integer n. False: were there such an m, we would have, for example, m = 4+5
and m = 27 + 5, so 9 = 32, which is false.

Negations of Exercises 3–5, 9, and 10 in T-BOP, Section 2.7.

Exercise 4. The negation of the statement

∀x ∈P(N), X ⊆ R

is the statement

∃x ∈P(N), X 6⊆ R.
This negation is false, since the original statement is true.

Exercise 10. The negation of the statement

∃m ∈ Z,∀n ∈ Z,m = n + 5

is the statement

∀m ∈ Z,∃n ∈ Z,m 6= n + 5.

This negation is true, since the original statement is false. Alternatively note that,
given m ∈ Z, let n = m + 46: then n + 5 = m + 51, and m 6= m + 51, so m 6= n + 5.
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S-POP Part B(iii)

Exercise B(iii)-1.

Theorem. ∀m ∈ Z, 6|m(m + 1)(m + 2).

Proof. Let m ∈ Z. It is enough to show that m(m + 1)(m + 2) is both even and
divisible by 3, since, by Exercise B(i)-9 in S-POP, this will imply that m(m+1)(m+2)
is divisible by 6.

1. First we show that m(m+ 1)(m+ 2) is even, as follows. We know that m is either
even or odd. We consider two subcases:

(a) If m is even, then m = 2k for some k ∈ Z, so

m(m + 1)(m + 2) = (2k)(2k + 1)(2k + 2) = 2
(
k(2k + 1)(2k + 2)

)
,

so m(m + 1)(m + 2) is even.

(b) If m is odd, then m = 2k + 1 for some k ∈ Z, so

m(m + 1)(m + 2) = (2k + 1)(2k + 2)(2k + 3) = 2
(
(2k + 1)(k + 1)(2k + 3)

)
,

so m(m + 1)(m + 2) is even.

In either case, m(m + 1)(m + 2) is even.

2. Next, we show that m(m+ 1)(m+ 2) is divisible by 3. By the division algorithm,
we can write m = 3` + r, where r equals 0, 1, or 2. We consider three subcases:

(a) If r = 0, then m = 2` for some ` ∈ Z, so

m(m + 1)(m + 2) = (3`)(3` + 1)(3` + 2) = 3
(
`(3` + 1)(3` + 2)

)
,

so m(m + 1)(m + 2) is divisible by 3.

(b) If r = 1, then m = 3` + 1 for some ` ∈ Z, so

m(m + 1)(m + 2) = (3` + 1)(3` + 2)(3` + 3) = 3
(
(3` + 1)(3` + 2)(` + 1)

)
,

so m(m + 1)(m + 2) is divisible by 3.

(c) If r = 2, then m = 3` + 2 for some ` ∈ Z, so

m(m + 1)(m + 2) = (3` + 2)(3` + 3)(3` + 4) = 3
(
(3` + 2)(` + 1)(3` + 4)

)
,

so m(m + 1)(m + 2) is divisible by 3.

In all cases, m(m + 1)(m + 2) is divisible by 3.

Since m(m+1)(m+2) is both even and divisible by 3, it is divisible by 6, as required.
�
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Exercise B(iii)-2.

Theorem. ∀x, y ∈ R,
x2 + y2 ≥ 6x + 4y − 15.

Proof. Let x, y ∈ R. We wish to show that x2 + y2 ≥ 6x + 4y − 15, which is
equivalent to showing that

x2 + y2 − 6x− 4y + 15 ≥ 0.

But note that x2 − 6x = (x− 3)2 − 9 and x2 − 4y = (x− 2)2 − 4. So what we need
to show is that

(x− 3)2 − 9 + (x− 2)2 − 4 + 15 ≥ 0,

or in other words, that
(x− 3)2 + (x− 2)2 + 2 ≥ 0.

But (x − 3)2 is the square of a real number, so it’s always ≥ 0. Similarly, so is
(x− 2)2. So

(x− 3)2 + (x− 2)2 + 2 ≥ 0 + 0 + 2 ≥ 0,

as required. �

Exercise B(iii)-3.

Theorem. ∃p ∈ {prime numbers}, p > 100.

Proof. Let p = 101. Then p is prime, as can be shown by simply checking whether
any number n, between 2 and 100, divides p.

So ∃p ∈ {prime numbers}, p > 100. �

Exercise B(iii)-4.

Theorem. ∃k ∈ Z such that k can be expressed as a sum of two squares in two
different ways.

Proof. Let k = 50. Then k = 12 + 72 = 52 + 52. So k can be expressed as a sum of
squares in two different ways. �

Exercise B(iii)-5.

(a) Theorem. ∀x ∈ R, ∃y ∈ R, x > y.

Proof. Assume x ∈ R. Let y = x− 1. Then x > y.

Therefore, ∀x ∈ R,∃y ∈ R, x > y. �

(b) Theorem. ∼ (∃y ∈ R,∀x ∈ R, x > y).

Proof. The statement

∼ (∃y ∈ R, ∀x ∈ R, x > y)
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is equivalent to the statement

∀y ∈ R,∃x ∈ R, x ≤ y.

So assume y ∈ R. Let x = y − 1. Then x ≤ y.

So
∼ (∃y ∈ R, ∀x ∈ R, x > y).

�


