### Solutions to Selected Exercises, HW #5

Assignment:

- T-BOP Section 2.7, page 55: Exercises 1–5, 9, 10.
- Supply a negation, in quantifier form, of each of the Exercises 3–5, 9, and 10 in T-BOP, Section 2.7. Then state whether your negated statement is true or false.
- S-POP Part B(iii), pages 8–9: Exercises B(iii)-1 through B(iii)-5.

### T-BOP, Section 2.7

Write the following as English sentences. Say whether they are true or false.

**Exercise 2.**  $\forall x \in \mathbb{R}, \exists n \in \mathbb{N}, x^n \geq 0$ : For any real number x, there is a natural number n such that  $x^n \geq 0$ . True: no matter what x is, take n = 2;  $x^2 \geq 0$  always.

**Exercise 4.**  $\forall x \in \mathscr{P}(\mathbb{N}), X \subseteq \mathbb{R}$ : Every subset of  $\mathbb{N}$  is a subset of  $\mathbb{R}$ . True: every set of integers is also a set of real numbers.

**Exercise 10.**  $\exists m \in \mathbb{Z}, \forall n \in \mathbb{Z}, m = n + 5$ : There is some integer m = n + 5 for every integer n. False: were there such an m, we would have, for example, m = 4 + 5 and m = 27 + 5, so 9 = 32, which is false.

# Negations of Exercises 3–5, 9, and 10 in T-BOP, Section 2.7.

**Exercise 4.** The negation of the statement

$$\forall x \in \mathscr{P}(\mathbb{N}), X \subset \mathbb{R}$$

is the statement

$$\exists x \in \mathscr{P}(\mathbb{N}), X \not\subseteq \mathbb{R}.$$

This negation is false, since the original statement is true.

Exercise 10. The negation of the statement

$$\exists m \in \mathbb{Z}, \forall n \in \mathbb{Z}, m = n + 5$$

is the statement

$$\forall m \in \mathbb{Z}, \exists n \in \mathbb{Z}, m \neq n+5.$$

This negation is true, since the original statement is false. Alternatively note that, given  $m \in \mathbb{Z}$ , let n = m + 46: then n + 5 = m + 51, and  $m \neq m + 51$ , so  $m \neq n + 5$ .

# S-POP Part B(iii)

#### Exercise B(iii)-1.

**Theorem.**  $\forall m \in \mathbb{Z}, 6 | m(m+1)(m+2).$ 

**Proof.** Let  $m \in \mathbb{Z}$ . It is enough to show that m(m+1)(m+2) is both even and divisible by 3, since, by Exercise B(i)-9 in S-POP, this will imply that m(m+1)(m+2) is divisible by 6.

- 1. First we show that m(m+1)(m+2) is even, as follows. We know that m is either even or odd. We consider two subcases:
  - (a) If m is even, then m = 2k for some  $k \in \mathbb{Z}$ , so m(m+1)(m+2) = (2k)(2k+1)(2k+2) = 2(k(2k+1)(2k+2)), so m(m+1)(m+2) is even.
  - (b) If m is odd, then m = 2k + 1 for some  $k \in \mathbb{Z}$ , so m(m+1)(m+2) = (2k+1)(2k+2)(2k+3) = 2((2k+1)(k+1)(2k+3)), so m(m+1)(m+2) is even.

In either case, m(m+1)(m+2) is even.

- 2. Next, we show that m(m+1)(m+2) is divisible by 3. By the division algorithm, we can write  $m = 3\ell + r$ , where r equals 0, 1, or 2. We consider three subcases:
  - (a) If r = 0, then  $m = 2\ell$  for some  $\ell \in \mathbb{Z}$ , so  $m(m+1)(m+2) = (3\ell)(3\ell+1)(3\ell+2) = 3(\ell(3\ell+1)(3\ell+2)),$  so m(m+1)(m+2) is divisible by 3.
  - (b) If r = 1, then  $m = 3\ell + 1$  for some  $\ell \in \mathbb{Z}$ , so  $m(m+1)(m+2) = (3\ell+1)(3\ell+2)(3\ell+3) = 3((3\ell+1)(3\ell+2)(\ell+1)),$  so m(m+1)(m+2) is divisible by 3.
  - (c) If r = 2, then  $m = 3\ell + 2$  for some  $\ell \in \mathbb{Z}$ , so  $m(m+1)(m+2) = (3\ell+2)(3\ell+3)(3\ell+4) = 3((3\ell+2)(\ell+1)(3\ell+4)),$  so m(m+1)(m+2) is divisible by 3.

In all cases, m(m+1)(m+2) is divisible by 3.

Since m(m+1)(m+2) is both even and divisible by 3, it is divisible by 6, as required.

## Exercise B(iii)-2.

Theorem.  $\forall x, y \in \mathbb{R}$ ,

$$x^2 + y^2 \ge 6x + 4y - 15.$$

**Proof.** Let  $x, y \in \mathbb{R}$ . We wish to show that  $x^2 + y^2 \ge 6x + 4y - 15$ , which is equivalent to showing that

$$x^2 + y^2 - 6x - 4y + 15 \ge 0.$$

But note that  $x^2 - 6x = (x-3)^2 - 9$  and  $x^2 - 4y = (x-2)^2 - 4$ . So what we need to show is that

$$(x-3)^2 - 9 + (x-2)^2 - 4 + 15 \ge 0,$$

or in other words, that

$$(x-3)^2 + (x-2)^2 + 2 \ge 0.$$

But  $(x-3)^2$  is the square of a real number, so it's always  $\geq 0$ . Similarly, so is  $(x-2)^2$ . So

$$(x-3)^2 + (x-2)^2 + 2 \ge 0 + 0 + 2 \ge 0$$
,

as required.  $\square$ 

#### Exercise B(iii)-3.

**Theorem.**  $\exists p \in \{\text{prime numbers}\}, p > 100.$ 

**Proof.** Let p = 101. Then p is prime, as can be shown by simply checking whether any number n, between 2 and 100, divides p.

So  $\exists p \in \{\text{prime numbers}\}, p > 100.$ 

# Exercise B(iii)-4.

**Theorem.**  $\exists k \in \mathbb{Z}$  such that k can be expressed as a sum of two squares in two different ways.

**Proof.** Let k = 50. Then  $k = 1^2 + 7^2 = 5^2 + 5^2$ . So k can be expressed as a sum of squares in two different ways.  $\square$ 

# Exercise B(iii)-5.

(a) **Theorem.**  $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x > y.$ 

**Proof.** Assume  $x \in \mathbb{R}$ . Let y = x - 1. Then x > y.

Therefore,  $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x > y.$ 

(b) **Theorem.**  $\sim (\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, x > y).$ 

**Proof.** The statement

$$\sim (\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, x > y)$$

is equivalent to the statement

$$\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, x \leq y.$$

So assume  $y \in \mathbb{R}$ . Let x = y - 1. Then  $x \leq y$ .

So

$$\sim (\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, x > y).$$