
Math 2001-004: Intro to Discrete Math Platonic Solids (SOLUTIONS) Fall 2015

A Platonic solid is a polyhedron that is regular (every face of the polyhedron is a regular
polygon, and all faces are congruent, meaning they have the same size and shape), and has
regular vertices (this means the same number of edges meet at each vertex). A Platonic solid
is said to have symbol {p, q} if each of its polygonal faces has p edges, and if q edges meet at
each vertex. For example, the tetrahedron:

is a Platonic solid of symbol {3, 3}.

We are now going to prove (by filling in the blanks):

Theorem. There are exactly five Platonic solids.

Proof. let P be a polyhedron with symbol {p, q}. Let F denote the number of faces of P .
By what we’ve assumed about the symbol of P , every face of P has p edges. So,
since there are F faces, in total we would have pF edges, except for the fact that
each edge is shared by two faces; so in fact, we only have half as many edges. That is, we
only have pF/2 edges. In other words, if E denotes the number of edges of P , then
F can be expressed in terms of E as follows:

F = 2E/p .

Now, let V denote the number of vertices of P . By what we’ve assumed about the symbol
of P , q edges of P meet at each vertex. So, since there are V vertices, in total
we would have qV edges, except for the fact that each edge emanates from two
vertices; so in fact, we only have half as many edges. That is, we only have qV/2
edges. In other words, if E denotes the number of edges of P , then V can be expressed in
terms of E as follows:

V = 2E/q .

But we also know that, for any polyhedron P , V −E +F = 2 always. This is called Euler’s
formula; we did this in class. Into Euler’s formula, let’s plug the above formula for F in
terms of p and E, and for V in terms of q and E; we get
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2E/q − E + 2E/p = 2.

Now divide the above formula by 2E on both sides, and then add 1/2 to both sides of the
result, to get

1

q
+

1

p
=

1

E
+

1

2
. (1)

Since E is positive, so is 1/E; so the above tells us that

1

p
+

1

q
>

1

2
. (2)

What possible values of p and q can make this work? Well first of all, we find that either p
or q must be less than 4, because if not then both p and q would be greater than or equal to

4 , so that both 1/p and 1/q would be less than or equal to 1/4 , so that

1

p
+

1

q
≤ 1

2
,

contradicting equation (2).

So we see that either p ≤ 3 (an integer) or q ≤ 3 (an integer). On the other
hand, since a polygon has at least three sides, we must have p ≥ 3 ; also, since at
least three edges must emanate from each vertex of a polyhedron (think about it!), we have
q ≥ 3 as well.

To summarize the previous paragraph: it must be the case that either p or q is less than or
equal to 3 , AND that both p and q are greater than or equal to 3 . This
can only happen if either p or q is exactly equal to 3 , and the other is greater than
or equal to 3 .

Suppose the first of these situations holds: that is, suppose p = 3 and q ≥
3 . Putting p = 3 into equation (1), and solving for 1/q, gives us gives us

1

q
=

1

E
+

1

6
. (3)

(fill in the blank with the correct fraction). Since 1/E is positive, this implies 1/q >
1/6 , or q < 6 (an integer). But since q is an integer and we’re assum-

ing q ≥ 3, we have q = 3 , q = 4 , or q = 5 . To summarize: the
case p = 3 and q ≥ 3 gives us three possibilities for the symbol of P :
{p, q} = {3, 3} , {p, q} = {3, 4} , or {p, q} = {3, 5} .
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Now let’s consider the other possibility, namely, when q = 3 and p ≥ 3 .
Putting q = 3 into equation (1) tells us that

1

p
=

1

E
+

1

6
(4)

(fill in the blank with the correct fraction). Since 1/E is positive, this implies 1/p >
1/6 , or p < 6 (an integer). But since p is an integer and we’re assum-

ing p ≥ 3, we have p = 3 , p = 4 , or p = 5 . To summarize: the
case q = 3 and p ≥ 3 gives us three possibilities for the symbol of P :
{p, q} = {3, 3} , {p, q} = {4, 3} , or {p, q} = {5, 3} .

So, in total, we have the following five distinct possibilities for the symbol {p, q} of our
polyhedron P : {p, q} = {3, 3} , {3, 4} , {3, 5} , {4, 3} , or
{5, 3} . To show that we actually do have five distinct Platonic solids, we need to

show that each of these possibilities really does correspond to a solid. We already saw that
the tetrahedron has symbol {3, 3} . To finish we consider the following
picture, depicting the octahedron, dodecahedron, cube, and icosahedron respectively:

From this picture, we see that the the octahedron has symbol {3, 4} , the dodec-
ahedron has symbol {5, 3} , the cube has symbol {4, 3} , and the icosahe-
dron has symbol {3, 5} . So all five symbols are actually realized, and the proof is
O.V.A.H.
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