
Math 2001-004: Intro to Discrete Math Fall 2015

DIY notes on recurrence relations and generating functions (SOLUTIONS)

Suppose we have a sequence
B1, B2, B3 . . .

that satisfies some recurrence relation, expressing Bn in terms of previous Bm’s: say

Bn = c0 + c1Bn−1 + c2Bn−2 + · · · + ckBn−k.

(To keep things simple, we’ll assume that c0, c1, . . . ck are constants, although in principle,

they might depend on n.) Suppose we also have initial conditions, meaning the first few (in

this case, the first k) Bm’s are known.

Example: Suppose

Qn = 4Qn−1 + 12Qn−2 for n ≥ 3; Q1 = 1; Q2 = 4.

Exercise 1: Write down (as integers) the first five Qn’s (including the first two, as specified

above).

1, 4, 28, 160, 976

The method of generating functions can often be applied to deduce a closed (non-recursive)
formula for Bn, in the following way.

Step 1. Define the generating function

B(x) =
∞∑
n=1

Bnx
n

for the Bn’s.

Exercise 2: Define a generating function Q(x) for the above sequence of Qn’s.

Q(x) =
∞∑
n=1

Qnx
n

Step 2. Use the recurrence relation and initial conditions to find a simple expression for
B(x).
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There are three tricks that are often useful here:

• First, split off terms from your series B(x), so that the recurrence relation applies to
each of the remaining terms in the sum.

• After applying the recurrence relation to the resulting sum, make changes in your
indices of summation, to obtain sums that have only Bm’s (and not Bm−1’s, Bm−2’s,

etc.) in them.

• Adjust the resulting infinite sums (by adding and subtracting the appropriate terms)

so that they start at the same index at which the sum B(x) starts (in our case, at 1).

Having completed these steps, you will, with luck, get an equation you can solve for B(x),
thus completing Step 2.

Exercise 3: Show that

Q(x) =
x

1 − 4x− 12x2
.

I’ll get you started, with the first trick:

Q(x) =
∞∑
n=1

Qnx
n = Q1x

1 + Q2x
2 +

∞∑
n=3

Qnx
n.

Hints for proceeding: plug in for Q1, Q2, and Qn on the right (for Qn, use the recurrence

relation). Break up your resulting sum into two sums. In the first of these sums, put

m = n − 1; in the second, put m = n − 2. (This is the second trick.) Then use the third
trick as necessary so that both sums on the right start at m = 1. Your result should be an
equation that can be solved for Q(x).

OK go ahead; here’s the start, again:

Q(x) =
∞∑
n=1

Qnx
n = Q1x

1 + Q2x
2 +

∞∑
n=3

Qnx
n

= x + 4x2 +
∞∑
n=3

(4Qn−1 + 12Qn−2)x
n

= x + 4x2 + 4
∞∑
n=3

Qn−1x
n + 12

∞∑
n=3

Qn−2x
n.

Substitute m = n− 1 in the first series on the right, and m = n− 2 in the second, to get

Q(x) = x + 4x2 + 4
∞∑

m=2

Qmx
m+1 + 12

∞∑
m=1

Qmx
m+2

= x + 4x2 + 4

( ∞∑
m=1

Qmx
m+1 −Q1x

2

)
+ 12

∞∑
m=1

Qmx
m+2.
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= x + 4x2 + 4

(
x
∞∑

m=1

Qmx
m − x2

)
+ 12x2

∞∑
m=1

Qmx
m

= x + 4x2 + 4xQ(x) − 4x2 + 12x2Q(x)

= x + Q(x)(4x + 12x2).

Solving for Q(x) gives

Q(x) =
x

1 − 4x− 12x2
.

Step 3. Expand your simple expression for B(x) into a power series. Typically, this will

entail a partial fraction decomposition of your expression for B(x).

Exercise 4. Find constants U and V such that

x

1 − 4x− 12x2
=

U

1 − 6x
+

V

1 + 2x
.

Hint: get a common denominator on the right. Show that this denominator is the same as
the denominator on the left. So you can equate numerators, and match up powers of x in
these numerators, to solve for U and V .

The equation
x

1 − 4x− 12x2
=

U

1 − 6x
+

V

1 + 2x

gives, upon getting a common denominator on the right,

x

1 − 4x− 12x2
=

U(1 + 2x) + V (1 − 6x)

(1 − 6x)(1 + 2x)
=

U + V + x(2U − 6V )

1 − 4x− 12x2
.

Equating coefficients of like powers of x in the numerators, on the left and right sides above,
gives U + V = 0 and 2U − 6V = 1. These equations are easily solved to give U = 1/8 and

V = −1/8. So

x

1 − 4x− 12x2
=

1

8

(
1

1 − 6x
− 1

1 + 2x

)
.
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Exercise 5. Use the geometric series formula

1

1 − z
=
∞∑
n=0

zn,

together with your answers from exercises 3 and 4 above, to express Q(x) as an explicit
power series in x.

Q(x) =
x

1 − 4x− 12x2
=

1

8

(
1

1 − 6x
− 1

1 + 2x

)
=

1

8

( ∞∑
n=0

(6x)n −
∞∑
n=0

(−2x)n
)

=
1

8

∞∑
n=0

(6n − (−2)n)xn.

Step 4. Match coefficients of like powers of x in your original series for B(x) (from Step 1)

with those in your new series (from Step 3), to obtain a formula for Bn.

Exercise 6. Combine the results of exercises 2 and 5 above to find an explicit, closed
formula for Qn, for n ≥ 1.

Qn =
1

8
(6n − (−2)n).

Exercise 7. Plug n = 1, 2, 3, 4, 5 directly into your formula from exercise 6, to verify your
results from exercise 1.

Q1 =
1

8
(6 − (−2)) = 1.

Q2 =
1

8
(62 − (−2)2) = 4.

Q3 =
1

8
(63 − (−2)3) = 28.

Q4 =
1

8
(64 − (−2)4) = 160.

Q5 =
1

8
(65 − (−2)5) = 976.
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Here is one more worked:

Example. Use the method of generating functions to solve the recurrence relation

C1 = 3, C2 = 9, Cn = 3Cn−1 + 10Cn−2 (n ≥ 3).

Solution. We define

C(x) =
∞∑
n=1

Cnx
n.

Then

C(x) = C1x
1 + C2x

2 +
∞∑
n=3

Cnx
n

= 3x + 9x2 +
∞∑
n=3

(3Cn−1 + 10Cn−2)x
n

= 3x + 9x2 + 3
∞∑
n=3

Cn−1x
n + 10

∞∑
n=3

Cn−2x
n.

Into the first sum on the right, we substitute m = n − 1; into the second, we substitute
m = n− 2. We get

C(x) = 3x + 9x2 + 3
∞∑

m=2

Cmx
m+1 + 10

∞∑
m=1

Cmx
m+2

= 3x + 9x2 + 3x
∞∑

m=2

Cmx
m + 10x2

∞∑
m=1

Cmx
m

= 3x + 9x2 + 3x

( ∞∑
m=1

Cmx
m − C1x

1

)
+ 10x2

∞∑
m=1

Cmx
m

= 3x + 9x2 + 3x
(
C(x) − 3x

)
+ 10x2C(x)

= 3x + (3x + 10x2)C(x).

Solving for C(x) gives

C(x) =
3x

1 − 3x− 10x2
. (1)

Since 1 − 3x− 10x2 = (1 − 5x)(1 + 2x), we write (1) as

C(x) =
A

1 − 5x
+

B

1 + 2x
. (2)
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Getting a common denominator on the right gives

C(x) =
A(1 + 2x) + B(1 − 5x)

1 − 3x− 10x2
=

(A + B) + (2A− 5B)x

1 − 3x− 10x2
. (3)

Equating numerators of (1) and (3) gives

3x = (A + B) + (2A− 5B)x

or, matching up coefficients of like powers of x,

0 = (A + B) and 3 = 2A− 5B.

Solving for A and B gives A = 3/7 and B = −3/7, or, by (2),

C(x) =
3

7

[
1

1 − 5x
− 1

1 + 2x

]
. (4)

Now, applying the geometric series expansion

1

1 − z
=
∞∑
n=0

zn

to (4), we get

C(x) =
3

7

[ ∞∑
n=0

(5x)n −
∞∑
n=0

(−2x)n
]

=
3

7

∞∑
n=0

[
5n − (−2)n

]
xn. (5)

Matching up coefficients of xn, for n ≥ 1, on the left and right sides of (5) gives

Cn =
3

7

[
5n − (−2)n

]
,

and we’re done.


