Quiz, Week 6

Name: **SOLUTIONS**

1. Use the Principle of Mathematical Induction (MI) to prove the following.

Proposition For all $n \in \mathbb{N}$, we have

$$1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}.$$

Proof. Let A_n be the statement in question.

Step 1: Base step. [Please complete the base step in the space below.]

$$1^3 = \frac{1^2(1+1)^2}{4}?$$

$$1 = 1.$$

So A_1 is true.

Step 2: Inductive step. We assume

$$A_k$$
: $1^3 + 2^3 + 3^3 + \dots + k^3 = \frac{k^2(k+1)^2}{4}$.

To deduce

$$A_{k+1}: 1^3 + 2^3 + 3^3 + \dots + (k+1)^3 = \frac{(k+1)^2(k+2)^2}{4}$$

[please write the right hand side of A_{k+1} in the above blank space], we note the following. [Please complete the inductive step in the space following the second equal sign below. It may help, at some point, to get a common denominator, and then to factor $(k+1)^2$ out of the numerator. There's more space on the back of this sheet, if you need it.]

$$1^{3} + 2^{3} + 3^{3} + \dots + (k+1)^{3} = [1^{3} + 2^{3} + 3^{3} + k^{3}] + \dots + (k+1)^{3}$$

$$= \frac{k^{2}(k+1)^{2}}{4} + (k+1)^{3} = \frac{k^{2}(k+1)^{2}}{4} + \frac{4(k+1)^{3}}{4} = \frac{k^{2}(k+1)^{2} + 4(k+1)^{3}}{4}$$

$$= \frac{(k+1)^{2}(k^{2} + 4(k+1))}{4} = \frac{(k+1)^{2}(k^{2} + 4k + 4)}{4} = \frac{(k+1)^{2}(k+2)^{2}}{4}.$$

So $A_k \Rightarrow A_{k+1}$ [please fill in the blank].

So, by the principle of <u>mathematical induction</u>, A_n is true for all $n \in \mathbb{N}$ [please fill in the blanks], and our proposition is proved. **ATWMR**

2. Suppose we have some statement A_n regarding integers $n \in \mathbb{N}^-$, where \mathbb{N}^- denotes the set of *negative* integers n. Suppose we know that A_{-1} is true. What else would we have to show, to prove that our statement holds for all $n \in \mathbb{N}^-$? Please explain. (You don't need to prove anything here; just explain the basic, intuitive ideas.)

If we know A_{-1} is true, then to prove A_n for all $n \in \mathbb{N}^-$, we must show that $A_n \Rightarrow A_{n-1}$ for all negative integers n. In this way, A_{-1} will imply A_{-2} , which will imply A_{-3} , and so on down the line.