Math 2001-004: Intro to Discrete Name: SOLUTIONS

Quiz, Week 6
1. Use the Principle of Mathematical Induction (MI) to prove the following.

Proposition For all n € N, we have
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Proof. Let A, be the statement in question.
Step 1: Base step. [Please complete the base step in the space below.]
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So A, is true.

Step 2: Inductive step. We assume
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To deduce
(k+1)*(k + 2)?
4
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[please write the right hand side of Axy1 in the above blank space], we note the following.
[Please complete the inductive step in the space following the second equal sign below. It may
help, at some point, to get a common denominator, and then to factor (k + 1)* out of the
numerator. There’s more space on the back of this sheet, if you need it.]
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So Ay =  Ary1 [please fill in the blank].

So, by the principle of __mathematical induction , A, is true for alln € _ N __ [please fill

in the blanks|, and our proposition is proved. ATWMR

2. Suppose we have some statement A, regarding integers n € N~, where N~ denotes the
set of negative integers n. Suppose we know that A_; is true. What else would we have to

show, to prove that our statement holds for all n € N=?7 Please explain. (You don’t need to
prove anything here; just explain the basic, intuitive ideas.)
If we know A_; is true, then to prove A, for all n € N7, we must show that A, = A,_; for

all negative integers n. In this way, A_; will imply A_,, which will imply A_3, and so on
down the line.



