· XX7 1 4

Name: **SOLUTIONS**

Quiz, Week 4

- 1. For this problem, you may want to recall that, for $m, n \in \mathbb{Z}$, we say m divides n, written m|n, if there is some integer k such that n=mk. Identify each of the following statements as true or false (circle "T" or "F"). If a statement is true, explain why (you don't need to provide a complete proof; just a sentence or two will do). If a statement is false, provide a counterexample to the statement. GENERAL HINT: think about zero and one.
- (a) $\forall m \in \mathbb{Z}, \exists n \in \mathbb{Z} \colon m | n$. **T F** Proof: Let $m \in \mathbb{Z}$. Then m | 0, since $0 = m \cdot 0$. So $\exists n \in \mathbb{Z} \colon m | n$.

(b) $\exists m \in \mathbb{Z} : \forall n \in \mathbb{Z}, m | n$. **T F**Proof: Let m = 1, and let $n \in \mathbb{Z}$. Then m | n, since $n = 1 \cdot n$. So $\forall n \in \mathbb{Z} : m | n$.

(c) $\forall m \in \mathbb{Z}, \forall n \in \mathbb{Z}, m | n$. T Froof: Let m = 2 and n = 3. Then $m \not | n$.

(over)

2. Fill in the blanks, to prove the following:

Proposition. Given any sets A, B, and C, we have

$$A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C).$$

Proof.

Let $x \in A \cup (B \cap C)$. Then, by definition of union, either $x \in A$ or $x \in B \cap C$. We consider two cases:

- (i) $x \in A$. But then, by definition of union, we have $x \in A \cup B$ and $x \in A \cup C$. So by definition of <u>intersection</u>, we have $x \in (A \cup B) \cap \underline{(A \cup C)}$.
- (ii) $x \in B \cap C$. But then, by definition of intersection, we have $x \in B$ and $x \in C$. So by definition of <u>union</u>, we have $x \in A \cup B$, and, similarly, $x \in A \cup C$. So by definition of <u>intersection</u>, we have $x \in A \cup B$.

In either case, we have $x \in (A \cup B) \cap (A \cup C)$. So $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$.

ATWMR

3. To prove that, for any sets A, B, and C, we have

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C),$$

what else (besides the above proposition) would you need to prove? Please just provide the *statement* that you would need to complete the proof; you *don't* need to supply the proof of that statement (well, not until your midterm, anyway).

We would need to show that

$$(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).$$