Name:

SOLUTIONS

1. Let

$$S = {\sqrt{2}, e, \pi}, \quad T = {-273, e, \pi, 7}, \quad U = {-273, \sqrt{2}, e, 29}.$$

(a) Find $(S-U) \cap T$.

$$(S-U) \cap T = (\{\sqrt{2}, e, \pi\} - \{-273, \sqrt{2}, e, 29\}) \cap \{-273, e, \pi, 7\}$$
$$= \{\pi\} \cap \{-273, e, \pi, 7\} = \{\pi\}.$$

(b) Find $S - (U \cap T)$.

$$S - (U \cap T) = \{\sqrt{2}, e, \pi\} - (\{-273, \sqrt{2}, e, 29\} \cap \{-273, e, \pi, 7\})$$
$$= \{\sqrt{2}, e, \pi\} - \{-273, e\} = \{\sqrt{2}, \pi\}.$$

(c) What is $|\mathscr{P}(T \times U)|$? Note that you're not actually being asked to *describe*, or specify the elements of, $\mathscr{P}(T \times U)$. The question is simply *how many* elements this set has. Please explain your answer.

We know that $T \times U$ has $|T| \times |U| = 4 \times 4 = 16$ elements. Now the power set of a set with m elements has 2^m elements, so $|\mathscr{P}(T \times U)| = 2^{16}$.

2. Prove the following:

Proposition. $7 + 15\mathbb{Z} \subseteq 7 + 5\mathbb{Z}$.

Proof. Let $x \in 7 + 15\mathbb{Z}$. Then x = 7 + 15k for some integer k. Since $15 = 5 \cdot 3$, we have $x = 7 + (5 \cdot 3)k = 7 + 5(3k) = 7 + 5c$, where $c = 3k \in \mathbb{Z}$. So $x \in 7 + 5\mathbb{Z}$.

So
$$7 + 15\mathbb{Z} \subseteq 7 + 5\mathbb{Z}$$
.

ATWMR