Quiz, Week 14

1. Complete the proof below.

Proposition. Define $f: \mathbb{R} - \{3\} \to \mathbb{R} - \{1\}$ by

$$f(x) = \frac{x+2}{x-3}.$$

Then f is a bijection.

Proof. First we show that f is injective: let $x_1, x_2 \in \mathbb{R}$ and suppose $f(x_1) = f(x_2)$. Then

$$\frac{x_1+2}{x_1-3} = \frac{x_2+2}{x_2-3},$$

so [fill in the rest:]

$$(x_1 + 2)(x_2 - 3) = (x_2 + 2)(x_1 - 3),$$

$$x_1x_2 - 3x_1 + 2x_3 - 6 = x_1x_2 - 3x_2 + 2x_1 - 6,$$

$$-3x_1 + 2x_3 = -3x_2 + 2x_1,$$

$$-5x_1 = -5x_2,$$

$$x_1 = x_2.$$

So $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$. So f is injective.

Next, we show that f is surjective: let $y \in \mathbb{R} - \{1\}$. We need to find $x \in \mathbb{R} - \{3\}$ such that [fill in the rest:] f(x) = y. That is, we need

$$y = \frac{x+2}{x-3},$$

$$y(x-3) = x+2,$$

$$xy - 3y = x+2,$$

$$xy - x = 2+3y$$

$$x(y-1) = 2+3y,$$

$$x = \frac{2+3y}{y-1}.$$

So $\exists x \in \mathbb{R} - \{3\}$ with f(x) = y. So f is surjective. So f is bijective.

2. Complete the proof below, by filling in the blanks.

Proposition. If S is any set and $A \subseteq S$, then $|A| \leq |S|$.

Proof. Let S be any set, and assume $A \subseteq \underline{S}$. By definition of the statement $|A| \leq |S|$, we need only find an injection $f: A \to \underline{S}$. But this is easy: define $f: \underline{A} \to S$ by f(a) = a. To show that f is injective, let $a_1, a_2 \in A$, and suppose $f(a_1) = f(\underline{a_2})$. By definition of f we have $f(a_1) = a_1$ and $f(a_2) = \underline{a_2}$, so we conclude that $\underline{a_1} = a_2$.

So $f(a_1) = f(a_2) \Rightarrow \underline{a_1 = a_2}$. So f is $\underline{\text{injective}}$, and our proposition is proved. **ATWMR**