Math 1310: CLS SOLUTIONS Tutorial: Modeling with Differential Equations

1. Two strains of bacteria – Calcul S. Coli, denoted C, and Lifus S. Sciencus, denoted L – are dissolved in a solution of Sprite, denoted S. Below, on this page, is a verbal description of the interactions among the two types of bacteria and the Sprite.

On the *next* page, you will find:

- (a) Space at the top of the page for writing down differential (rate) equations for C', L', and S'; and
- (b) A list, at the bottom of the page, of terms that might appear in these differential equations.

Your task is to *build* (and write down) the differential equations in part (a) out of the terms listed in part (b). Each term may be used *at most* once; some won't be used at all. Here is the description of the interactions:

- C grows logistically, with carrying capacity proportional to the amount of L present.
- Sprite consumes C at a rate proportional to the amount of C present.
- A pair of C bacteria can spontaneously join to form an L bacterium; the overall rate at which this occurs is proportional to the number of possible C-to-C interactions;
- L grows at a rate that is, in the absence of other factors, proportional to the amount of L present, but that is inhibited by S: the more S there is present, the more slowly L grows;
- An L bacterium can spontaneously split into two C bacteria; the overall rate at which this occurs is proportional to the amount of L present;
- S grows at a rate proportional to the amount of C present times the amount of L present;
- Each *individual* C bacterium consumes S at a rate proportional to the amount of S present;
- L consumes Sprite at a rate proportional to the amount of L present.

SOME HINTS:

- You should need exactly *ten* of the terms from part (b) to construct your differential equations in part (a).
- "The number of possible C-to-C interactions" is proportional to C^2 , since every C bacterium can interact with every other C bacterium.
- Since a pair of C bacteria can join to form an L bacterium, the rate at which C bacteria are lost to this process must be twice the rate at which L bacteria are produced by it.

Math 1310: CLS SOLUTIONS Tutorial: Modeling with Differential Equations

• Similarly, since an L bacterium can split to form a pair of C bacteria, the rate at which C bacteria are produced by this process must be twice the rate at which L bacteria are lost to it it.

(a) $C' = +aC\left(1 - \frac{C}{bL}\right) - wC - 2\ell C^2 + 2tL$ $L' = +\frac{dL}{1 + eS} + \ell C^2 - tL$ S' = +qCL - vCS - hL

(b) (In the terms below, all lower case letters are positive parameters, and all upper case letters are variables.) Not all terms will be used.

$$+aC\left(1-\frac{CL}{b}\right)$$
 ; $-eS$; $-wC$; $+tL$; $+\ell C^2$; $+2tL$; $-tL$; $-2\ell C^2$; $+gCL$; $+aC\left(1-\frac{C}{bL}\right)$;

$$-hL$$
 ; $-vCS$; $+\frac{dL}{1+eS}$; $+d(L-eS)$

Math 1310: CLS SOLUTIONS Tutorial: Modeling with Differential Equations

2. Chocolate (C), vanilLa (L), and Strawberry (S) ice cream interact in a sundae, according to the differential equations below. By filling in the blanks below, describe their interactions in ways that are consistent with the terms in these differential equations.

$$C' = aCL - \frac{c}{1+dS}$$

$$L' = kL\left(1 - \frac{L}{qS}\right) - fL$$

$$S' = nCS + 3fL$$

Chocolate ice cream grows at a rate <u>proportional</u> to the product of the amount
of Chocolate and <u>vanilLa</u> ice cream present. Chocolate ice cream melts, but
the melting is inhibited by <u>Strawberry</u> ice cream: the more <u>Strawberry</u>
ice cream, the more slowly <u>Chocolate</u> ice cream melts.
vanilLa ice cream grows logistically, with <u>carrying</u> capacity pro-
portional to the amount of ice cream present. Also, a molecule of
vanilLa ice cream can spontaneously melt into three molecules ofStrawberry
ice cream; this happens at a rate proportional to the amount of <u>vanilLa</u> ice
cream present.
Strawberry ice cream grows at a rate proportional to the product of the amounts of
<u>Chocolate</u> and <u>Strawberry</u> ice cream present. Strawberry ice
cream doesn't melt. (And, again, three molecules of Strawberry ice cream can be spon-
taneously generated from one molecule of vanilLa ice cream.)