Exponential growth and decay.

Then.

(1)
$$\frac{dP}{dt} = \frac{d}{dt} \begin{bmatrix} P_0 e^{kt} \end{bmatrix} = P_0 \frac{d}{dt} \begin{bmatrix} e^{kt} \end{bmatrix}$$

$$= P_0 \cdot e^{kt} \frac{d}{dt} \begin{bmatrix} kt \end{bmatrix} = P_0 \cdot e^{kt} k$$

$$= k \cdot P_0 e^{kt} = kP.$$

remember that this is P

CONCLUSION:

The function P=Poekt satisfies the exponential (or unlimited) growth initial value problem (IVP*)

$$QP = kR$$
 $QP = kR$

Initial condition (IC)

differential equation (DE)

* IVP means: one or more DE's together with one or

Remark. In (Eg), k is called the per capita growth rate; Po is the initial value of P.

Example 1.

A population P grows at a yearly rate equal to 0.3 times the population size.

If P = 100,000 when t=0, find

(a) A formula for P(t) (t in years);

(b) The population four years on.

Solution.

(a) We're given that
$$\frac{dP}{dt} = 0.3P, \qquad P(0) = 100,000.$$

So by (Eg), P(t) = 100,000 e.3t

(b) By part (a), 0.3(4)
P(4) = 100,000 e = 332,011.69... people.

(II) Exponential decay.

Reasoning as above, we find:

The function R = Roe-kt satisfies the exponential decay IVP

$$\frac{dR}{dt} = -kR, \qquad R(0) = R_0.$$

Here, k>0 is the (per unit) decay rate; Ro is the initial value.

Example d.

Sugar dissolves in water at a rate proportional to the amount remaining. Write an equation for the amount 5(t) of sugar present at time t, in terms of the decay rate k and initial amount So (at t=0).

Solution.
We have
$$\frac{dS}{dt} = -kS$$
 and $S(0) = S_0$, so by (E_0) ,
$$S(t) = S_0 e^{-kt}$$

(III) Basic properties of $y=e^{x}$

(i)
$$e = 1$$
. (iv) $e^{a+b} = b$ for all a, b. (ii) $e^{x} > 0$ for all x. (v) $e^{a-b} = e^{a/e^{b}}$ for all a, b. (iii) $e^{-x} = 1/e^{x}$ for all x. (vi) $(e^{r})^{s} = e^{rs}$ for all r, s. (vii) $\frac{d}{dx} [e^{x}] = e^{x}$.

(vi	ii) Graph	· · · · · · · · · · · · · · · · · · ·	$\gamma = e^{x}$
×	e ^x		
-3	0.05		
-2	0.14		
-	0.37		
0	1.00		
1	a.7a		
2	7.39		
3	20.09	11	
		T	
	•	-1	1 ×

Example 3. Let $f(x) = e^x e^{7-x}$

Find f(x) in two ways:

- (a) Differentiate, then simplify; (b) Simplify, then differentiate.

Solution.

(a)
$$f'(x) = \frac{d}{dx} \left[e^{x} e^{7-x} \right]$$

$$= e^{x} \frac{d}{dx} \left[e^{7-x} \right] + e^{7-x} \frac{d}{dx} \left[e^{x} \right]$$

$$= e^{x} e^{7-x} \frac{d}{dx} \left[7-x \right] + e^{7-x} e^{x}$$

$$= e^{x} e^{7-x} (-1) + e^{7-x} e^{x} = 0$$

(the two summands cancel).

(b) $f(x) = e^{x} e^{7-x} = e^{x+7-x} = e^{7}$ (a constant),

so
$$f'(x) = \frac{d}{dx} \left[e^{7} \right] = 0.$$