p. I Week 6-Thursday, 10/1

Logarithms and "how long" problems.

Goal: to solve problems like

for t.

I) A cool property of natural logarithms (they "undo" natural exponentials).

Recall that
$$\frac{d}{dx} [b^{\times}] = \ln(b) \cdot b^{\times}$$

or, solving for ln(b): $ln(b) = \frac{a}{4x} [b^{x}].$

what happens if we plug in $b = e^a$ (where a is any real number)? properties of e^x we get $\ln(e^a) = \frac{d}{dx} \left[(e^a)^x \right] = \frac{d}{dx} \left[e^{ax} \right]$ (ea) e^a

 $= \underbrace{a \cdot e}_{= a} = a.$ $= \underbrace{a \cdot e}_{= a} = a.$

Week 6-Thursday, 10/1

I Applications to "how long problems.

Example 1.

Last time, we had a population P given by P(t) = 100,000e (t in years; P in people). How long does it take for P(t) to reach 400,000?

Solution.

We solve 100,000e 0.3t = 400,000 for t. First, divide by 100,000:

Take "In" of both sides:

 $ln(e^{0.3t}) = ln(4)$ 0.3t = ln(4) $t = \ln(4)/0.3 = 4.62...$ years. Example 2

A sample of R grams of radium 226 is known to decay according to the equations

 $\frac{dR}{dt} = -kR, \qquad R(0) = R_0,$

where R is in grams, t in years, and k=0.000428 Find the "half-life" of radium 226, meaning: how long it takes for a sample to reduce by half.

By (Ea) of last time, we know that R = Roe 0.000428t

We want to know: for which t is $R = \overline{a}Ro$? So we solve: $-0.000428t = \overline{a}Ro$. Divide by Ro: $= 0.000428t = \frac{1}{2}a$.

Take $\ln \frac{1}{\ln (e^{-0.000428t})} = \ln (\frac{1}{a})$ -0.000428t = $\ln (\frac{1}{a})$

$$-0.000428t = ln(1/2)$$

$$-ln(1/2)$$

 $t = \frac{-\ln(1/2)}{0.000428} \approx 1,619.5$ years.