The natural logarithm function.

I) Graph.

Take the function  $y=e^{x}$  and swap the roles of x and y. Then:

(a) Geometrically, we are swapping the horizontal and vertical axes, which amounts to a reflection about the line y = x.

(b) Algebraically, we are writing

Note we can solve for y using In:

 $ln(x) = ln(e^{y})$  ln(x) = y.

CONCLUSION: y = ln(x) is  $y = e^{x}$ , reflected about the line y = x.



II) Properties of In(x).
These all come from properties of exand the equation

$$\ln(e^{\alpha}) = \alpha.$$
 (\*)

For example, (x) gives In(e°)=0. But e°=1. So:

(b) 
$$\ln(e)=1$$
.  
(c)  $\ln(\frac{1}{x})=-\ln(x)$  for  $x>0$ .

(e) 
$$\ln(x/y) = \ln(x) - \ln(y)$$
 for  $x, y > 0$ .  
(f)  $\ln(r^5) = \sin(r)$  for  $r > 0$ .

Example 1.

Simplify

$$\ln \left( \frac{a e^{5x-3}}{x \cos(6)} \right)$$
.

By properties (d)(e)(f), and by (\*),

$$\ln\left(\frac{ae^{5x-3}}{b^{\cos(x)}}\right) = \ln(a^{10}e^{5x-3}) - \ln(x^{\cos(b)})$$

$$= \ln(a^{10}) + \ln(e^{5x-3}) - \ln(x^{\cos(b)})$$

$$= \ln(a^{10}) + \ln(e^{5x-3}) - \ln(x^{\cos(b)})$$

$$= \ln(a^{10}) + \ln(e^{5x-3}) - \ln(x^{\cos(b)})$$

One more trick: let's raise e to both sides

of (x). We get eln(ea) = a (W)

Now e could be anything (positive), so call it b. Then equation (DC) gives

e In(b) = b (b70). (\*)

(Together, (x) and (x') say: y=ex and y=ln(x) undo each other in either order.)

Example 2.

Simplify ×In(29)+5In(cos(x))

Solution.  $= \frac{\ln(29) + 5\ln(\cos(x))}{= \left(e^{\ln(29)}\right)^{\times} \left(e^{\ln(\cos(x))}\right)^{5}}$ 

=  $29^{x} (\cos(x))^{5}$ =  $29^{x} \cos^{5}(x)$ .