Stepsize: What's up with that?

Question: how does changing the "stepsize" At change (a) computations and (b) results?

Example.
Given:

· The usual SIR equations

$$S' = -aSI$$
 $I' = aSI - bI$
 $R' = bI$, (SIR)

- · Initial conditions 5(0)=500, I(0)=10, R(0)=0,
- · Parameters a = 0.001, b = 0.2,

find
$$5(4)$$
, $T(4)$, $R(4)$ using:

(A) stepsize $\Delta t = 4$,

(B) stepsize $\Delta t = 2$.

Salution. (A) S(4) = S(0) + 4S = S(0) + S'(0) + 4S $= S(0) + (-a \cdot S(0) \cdot I(0)) \cdot 4$ $= S(0) + (-0.001 \cdot 500 \cdot 10) \cdot 4$ $= S(0) + (-0.001 \cdot 500 \cdot 10) \cdot 4$ $= S(0) + (-0.001 \cdot 500 \cdot 10) \cdot 4$

$$R(4) = R(0) + \Delta R$$

= $R(0) + R'(0) \cdot \Delta t$
= $R(0) + (b \cdot I(0)) \cdot \Delta t$
= $O + (0.2 \cdot 10) \cdot 4 = 8$.

$$I(4) = S(0) + I(0) + R(0) - S(4) - R(4)$$

= $500 + 10 + 0 - 480 - 8 = 22$.

Notes.

(a) All results are approximate. Why? Because, in equations like

$$S(4) = S(2) + \Delta S = S(2) + S'(2) \Delta t$$

the second "=" should really be "~" This is because 5' itself typically changes with t, so a 5 is only roughly equal to 5'(t) at for a specific time t.

(b) Smaller At means more frequent recalibration of 5'(t), which typically means BETTER APPROXIMATIONS. For example: we could predict S(4), I(4), R(4) using At=0.01 (and a computer); after 401 deretions (t=0,0.01,0.02,0.03,...,3.98,3.99,4), we get

5(4)=463.57, I(4)=31.30, R(4)=15.13 individuals (a better approximation)

Summary: SIR by "Evler's method."

Start at t=0 use SIR multiply to current values

current ("old") current net values

current ("old") current het values

start at t=0 use SIR multiply to current values

current ("old") current values

start at t=0 use SIR multiply to current values

current ("old") current values

start at t=0 use SIR multiply to current values

(Repeat until desired t-value is reached.)