A useful integration technique:

Integration by substitution

(= the chain rule in reverse, sort of).

Example 1. Find \(\)2xcos(x2)dx.

The key is that the integral contains something - namely, x2-whose derivative - namely, 2x - is also present.

The trick is to call that "something" u:

 $\frac{dv}{dx} = \lambda_x$

 $du = 2xdx. \frac{x}{2}$ $\int_{-\infty}^{\infty} 2x\cos(x^{2})dx = \int_{-\infty}^{\infty} \cos(u)du = \sin(u) + C = \sin(x^{2}) + C.$ $\int_{-\infty}^{\infty} 2x\cos(x^{2})dx = \int_{-\infty}^{\infty} \cos(u)du = \sin(u) + C = \sin(x^{2}) + C.$ $\int_{-\infty}^{\infty} 2x\cos(x^{2})dx = \int_{-\infty}^{\infty} \cos(u)du = \sin(u) + C = \sin(x^{2}) + C.$ $\int_{-\infty}^{\infty} 2x\cos(x^{2})dx = \int_{-\infty}^{\infty} \cos(u)du = \sin(u) + C = \sin(x^{2}) + C.$ $\int_{-\infty}^{\infty} 2x\cos(x^{2})dx = \int_{-\infty}^{\infty} \cos(u)du = \sin(u) + C = \sin(x^{2}) + C.$

Check: $\frac{d}{dx} \left[\sin(x^2) + C \right] = \cos(x^2) \cdot \frac{d}{dx} \left[x^2 \right] + 0$ $= \cos(x^{2}) \cdot 2x = 2x\cos(x^{2}). \sqrt{2}$

Technically, $\frac{dv}{dx}$ isn't a fraction, so why can we "multiply $\frac{dv}{dx} = \frac{dx}{dx} + \frac{dx}{dx} + \frac{dx}{dx} = \frac{dx}{dx} + \frac{dx}{dx} + \frac{dx}{dx} = \frac{dx}{dx} + \frac{dx}{dx} + \frac{dx}{dx} + \frac{dx}{dx} = \frac{dx}{dx} + \frac{dx}{dx}$ Why? Because it works! The "check" illustrates this (and shows how the chain rule figures in). Example 2. (Note the work "in the margin.") (choose a "u" $\int_{0.5}^{15} \frac{4}{3} (2+x^{5}) \frac{26}{3} \frac{1}{3} \frac{1}{3}$

Example 3. $\int e^{\sin(x)} \cos(x) dx \qquad u = \sin(x)$ $= \int e^{u} du \qquad du = \cos(x)$ $= e^{u} + C = e^{\sin(x)} + C.$ $\frac{d}{dx} = \cos(x) dx$ $\frac{d}{dx} = e^{\sin(x)} \cos(x) + C$ $\frac{d}{dx} = e^{\sin(x)} \cos(x) dx$

Example 4. $\int \frac{e^{x}}{1+(e^{x}+4)^{2}} dx$ $= \int \frac{1}{1+u^{2}} dv = \arctan(u)+C$ $= \arctan(e^{x}+4)+C.$

We went right from v=... to dv=..., skipping the step dv = ... in between.

dx

Deck 13- Friday, 4/12

Example 5.

$$\int \frac{\sin(\ln(z))}{z} dz$$

$$= \int \sin(u) du = -\cos(u) + C$$

$$= -\cos(\ln(z)) + C.$$

$$= \cos(\ln(z)) + C.$$

Example 6.

$$\int x \sin(x^2+1) dx$$

$$= \int \sin(u) \cdot \left(\frac{du}{2}\right)$$

$$= \frac{1}{2} \int \sin(u) du = -\frac{1}{2} \cos(u) + C$$

$$= -\frac{1}{2} \cos(x^2) + C$$
So Anide by 2

* If your u-substitution gives your du an unwanted constant factor, like 2, just divide by this factor.

Fxample 7.
$$\int x^{3} e^{x^{3}} dx$$

$$= \int e^{y} \left(\frac{\partial y}{\partial y} \right) = \sqrt{3} \int e^{y} dy$$

$$= \frac{1}{3} e^{y} + C$$

$$= \frac{1}{3} e^{x} + C$$

$$= \frac{1}{3} e^{x} + C$$

Example 8. Set
$$dy = \int e^{y} dy = \int e^{y} dy$$

$$= \frac{1}{7} \int e^{y} dy = \int e^{y} (\frac{dy}{7})$$

$$= \frac{1}{7} \int e^{y} dy = \int e^{y} (\frac{dy}{7})$$

$$= \frac{1}{7} \int e^{y} dy = \int e^{y} (\frac{dy}{7})$$

$$= \frac{1}{7} \int e^{y} dy = \int e^{y} (\frac{dy}{7})$$

$$= \frac{1}{7} \int e^{y} dy = \int e^{y} (\frac{dy}{7})$$

$$= \frac{1}{7} \int e^{y} dy = \int e^{y} (\frac{dy}{7})$$

$$= \frac{1}{7} \int e^{y} dy = \int e^{y} (\frac{dy}{7})$$

$$= \frac{1}{7} \int e^{y} dy = \int e^{y} (\frac{dy}{7})$$

$$= \frac{1}{7} \int e^{y} dy = \int e^{y} (\frac{dy}{7})$$

$$= \frac{1}{7} \int e^{y} dy = \int e^{y} (\frac{dy}{7})$$

$$= \frac{1}{7} \int e^{y} dy = \int e^{y} (\frac{dy}{7})$$

$$= \frac{1}{7} \int e^{y} dy = \int e^{y} (\frac{dy}{7})$$

$$= \frac{1}{7} \int e^{y} dy = \int e^{y} (\frac{dy}{7})$$

Example 9. $\int \cos(x^4) dx = ?$

We could try $v=x^4$, but then $dv=4x^3dx$, and what do we do with the x^3 ?

Fact: sometimes substitution fails. (Also: cos(x4) has no nice antiderivative.)

Next time: substitution in definite integrals.