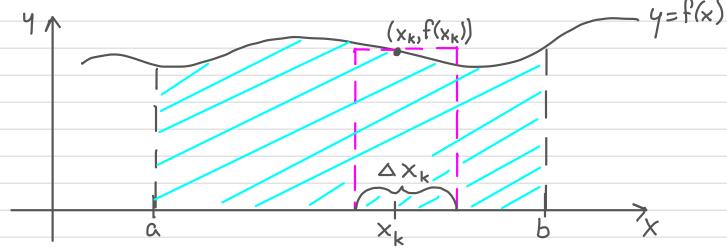
The definite integral.

Let f(x) be a function that's 70 on [a,b].



The above shaded area is denoted $\int_a^b f(x) dx$:

"the definite integral, from a to b, of f(x) dx."

Note: for now, the "dx" is just a place holder.

Recall that this area can be approximated by Riemann sums, which give better approximations as we use more, and narrower, rectangles. 50:

(S)
$$\int_{0}^{5} f(x) dx = \lim_{\alpha \in \Delta \times_{k}} (f(x_{1}) \Delta x_{1} + f(x_{2}) \Delta x_{2} + ... + f(x_{n}) \Delta x_{n}).$$

Definition of Saf(x) dx

As usual, X_k is a point in the k subinterval, and ΔX_k is the length of that subinterval.

Since Saf(x) dx is an area (for f(x) > 0 on [a,6]), we can sometimes evaluate definite integrals by basic geometry.

Examples (DIY: draw a picture, if it helps).

- 1) $\int_0^5 40x = area under the graph of <math>f(x) = 4$, over $[0,5] = base \cdot height = 5.4 = 30$.
- a) $\int_0^5 4x \, dx = area$ under the graph of f(x) = 4x, over $[0,5] = \frac{1}{2} \cdot base \cdot height$ $= \frac{1}{2} \cdot 5 \cdot 20 = 50$.
- 3) $\int_0^5 4x^2 dx = area under the graph of <math>f(x) = 4x^2$, over [0, 5] = ?

We could approximate this area with Riemann sums, but soon, we'll see a better way.

Remark. If f(x) < 0 somewhere on [a,b], then some of the summands $f(x_k)\Delta x_k$ on the right side of (S) will, typically, be negative. y = f(x)

 $(x_k,f(x_k))$

Week 11 - Wednesday, 11/4

Consequence (DIY: think about it): in general (even if f(x)<0' in places),

$$\int_{a}^{b} f(x) dx = \underline{signed}$$
 area of $f(x)$ from a to b
= sum of areas above x-axis, MINUS sum of areas below

Examples.

4)
$$\int_{-2}^{4} \times dx =$$

BLUE AREA minus

since the areas of the two "lobes" cancel.

