
Chapter 6

Probability and Statistics

(SOLUTIONS)

Probability is often defined as long-term relative frequency. The study of probability addresses
questions like this: In the long term (meaning: after a certain scenario or “experiment” – for
example, flipping a coin – has been repeated many, many times), what fraction of the time (that
is, with what relative frequency) does a given outcome (for example, the coin landing heads up)
result?

The theory of probability can be applied to the study of statistics, which may be defined as the

branch of mathematics concerned with the collection, classification, analysis, and interpretation of

numerical facts, for the purposes of drawing inferences from their quantifiable probability.

The big idea here is that natural phenomena are, in general, not completely deterministic. That
is, they do not evolve according to precisely predictable formulas or recipes. Still, deterministic
models like those examined in prior chapters often give good approximations to what happens
“in real life.” And we can apply statistical analyses to get a sense of how well these models
reflect reality. And we can thereby quantify, in rigorous ways, statements like “we have this much
confidence that this given situation will yield an outcome in the following prescribed range.”

In this chapter, we present a sketch of the above ideas, with just enough detail that we can
investigate two main (related) tools in statistical inference: hypothesis testing and confidence

intervals. The reader should note, along the way, how our development of these ideas mirrors, and
uses, some previously studied concepts – concepts of definite integrals, areas, Riemann sums, and
the Fundamental Theorem of Calculus.

6.1 Relative frequency density

Flipping coins; the central limit theorem

Consider the experiment of flipping six coins, and recording the number of heads that come up.
The outcome of such an experiment will, of course, be one of the integers 0, 1, 2, 3, 4, 5, 6.
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A certain Calculus class at the University of Colorado Boulder repeated this experiment 3,444
times. The results of these 3,444 trials of this experiment are summarized in the following “fre-
quency table.”

Table 6.1.1. Six coins, flipped 3,444 times

Number of heads 0 1 2 3 4 5 6
Frequency 66 341 825 1048 780 333 51

We can compile this data into a histogram, with “frequency” on the vertical axis and “number of
heads” on the horizontal. We get a figure like this:
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Figure 6.1. Histogram for trials of a coin-flipping experiment

We’ve superimposed, on the above histogram, a certain bell-shaped curve that approximates the
“shape” of the data. The curve we’ve used is a particular kind of bell-shaped curve, known as a
normal curve, and the normal curve we’ve chosen is one that is especially well-suited to the data.
We’ll explain the meaning of all of this in the next section.

(Note that the bars of our histogram are contiguous; there is no space between them. This is a
convention that we will always follow, and that will be important to our interpretation, later in
this section, of histograms in terms of area.)

The “normal” shape of a coin-flipping experiment becomes even more evident if each trial of the
experiment entails a larger number of coins, and if many more trials are performed. For example,
if an experiment comprises the flipping of 50 coins, and this experiment is repeated 300,000 times,
then the result might look like this:
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Figure 6.2. Histogram for trials of another coin-flipping experiment
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(The data for the above histogram were obtained through a simulation. In other words, this data
was not obtained by actually flipping 50 coins, 300,000 times. Rather, a computer mathematics
package was used to pick, at random, 50 numbers, where each number could either be a zero –
representing a coin turning up “heads” – or a one – representing “tails.” The number of zeroes
resulting from this was recorded, and this process was repeated 300,000 times.)

As before, we have fit the histogram with a certain “normal” curve that is particularly well-suited
to the data. In this case, the fit is quite close.

The above discussions illustrate a huge result in probability, which will be central (pun intended)
to our discussions of statistical inference in the next section.

If each trial of an experiment comprises many small, independent factors,
and many trials are performed, then (under some mild technical conditions)
the outcomes of the experiment will follow a roughly normal distrbution.

The Central Limit Theorem

We will not prove this result; proofs may be found in most advanced texts on probability and
statistics. We do take a moment, though, to note how this theorem reflects our discussions above.
Consider, in particular, the scenario encapsulated by Figure 6.2. There, the 50 coins being tossed
are the “many small, independent factors” of the theorem. (They are independent in the sense
that no one coin affects the behavior of any others. Of course, the coins might bounce against
each other on the way down, but we can assume that any effects of this contact cancel each other
out, in terms of the probability of any coins coming up heads. Alternatively, we can imagine that
the fifty coins are flipped one at a time.) And the 300,000 repetitions are the “many trials” cited
in the theorem.

We have not been specific about how close to normal one’s distribution will be, or the manner
in which this might depend on how many factors there are, or how many trials are performed.
Nor will we elaborate on this much. The important idea, for our purposes, is that more factors

and more trials tend to produce distributions that are more normal. This idea is exemplified by
comparing the scenarios and histograms of Figures 6.1 and 6.2 above. (The importance of having
numerous factors and numerous trails may also be appreciated by considering some rather extreme
cases. Specifically, imagine flipping a single coin, any number of times, or a huge number of coins,
just once. In neither case will the histogram thus obtained look at all bell-shaped!)

Mean and standard deviation

Ultimately, we wish to draw stronger connections between histograms (like the ones in Figures 6.1
and 6.2 above) and curves that “fit” them (like the ones superimposed on the histograms in the
above figures). To this end, we’ll need formulas for certain quantities related to the “shape” of a
data set.

We begin with the following.
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Definition 6.1.1. Let X be a set consisting of n numerical (not necessarily distinct) data points,
labeled x1, x2, x3, . . . , xn. That is,

X = {x1,x2, . . . ,xn}.

Then:

(a) We define the mean x̄ and standard deviation s of X by:

x̄ =
x1 + x2 + . . .+ xn

n
, s =

r
(x1 � x̄)2 + (x2 � x̄)2 + . . .+ (xn � x̄)2

n� 1
.

(b) Suppose the data points in X take on only m distinct values; labeled y1, y2, y3, . . . , ym.
Further, let fj denote the number of times that a given value yj occurs in X, for 1  j  m.
(That is: various different xk’s can have the same value yj; we denote number of xk’s that do
so by fj. So f1 + f2 + · · ·+ fm = the total number of data points in X = n.) Then the above
quantities x̄ and s can be computed using the following formulas:

x̄ =
f1y1 + f2y2 + . . .+ fnyn

n
, s =

r
f1(y1 � x̄)2 + f2(y2 � x̄)2 + . . .+ fn(yn � x̄)2

n� 1
.

The mean x̄ is considered a measure of the average, or center, or central tendency, of the data in
the set X. To see that this is a reasonable way to think of the mean, let’s consider the formula for
x̄ given in part (a) of the above definition What this formula tells us is this: Suppose you have n

perhaps unequal parts, of sizes x1, x2, . . . , xn, which constitute a whole of size x1 + x2 + . . .+ xn.
If you want to divide this whole into n equal parts, then each part must have size x̄.

Similarly, the standard deviation s may be considered a measure of the spread of the data in X.
The rationale for this way of thinking comes essentially from the quantities (xk � x̄)2 appearing
in the above (first) definition of s. The idea here is that the magnitude of xk � x̄ tells us how far
the data point xk is from the center x̄ of the data; so adding up all the (xk � x̄)2’s gives us a sense
of how far the data is collectively from this center.

The squaring of each xk � x̄, in our definition of s, ensures that all of our summands are positive,
so that negative terms won’t cancel out positive ones. We divide by n � 1 to “level the playing
field” among data sets of different sizes, so that adding data points to a set does not automatically
increase its standard deviation. (In some definitions of s, the division is by n rather than n � 1.
This is for technical reasons that we will not discuss here.) And finally, we take the square root
at the end to compensate, in some sense, for the squaring that we applied to each xk � x̄.

There is another measure of spread in a data set called mean absolute deviation. This definition
looks like the above definition of s, except that (xk � x̄)2 is replaced by |xk � x̄| for each k, and no
square root is taken at the end. The primary advantage of standard deviation over mean absolute
deviation is that the latter entails absolute values, which are not locally linear everywhere. (See
Section 2.2.) This makes calculus much harder to apply, and makes mean absolute deviation
unwieldy from a mathematical perspective.
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To highlight the above definitions, and in particular, how they work for data that’s “grouped” into
distinct values, let’s return to our “six coins, flipped 3,444 times” data. The data set X in this
case has size n = 3,444; a data point xk tell us how many heads were observed on a particular
trial (say, the kth trial) of the flipping experiment.

Of course, each xk must be an integer from 0 to 6. That is, our data groups into distinct values
y1 = 0, y2 = 1, y3 = 2, and so on. The frequency fj with which each of these yj’s occurs is given
by Table 6.1.1. We may therefore use the formulas from part (b) of Definition 6.1.1 to compute x̄

and s, as follows:

x̄ =
(66⇥ 0) + (341⇥ 1) + · · ·+ (333⇥ 5) + (51⇥ 6)

3444
= 2.96922,

s =

r
66(0� x̄)2 + 341(1� x̄)2 + · · ·+ 333(5� x̄)2 + 51(6� x̄)2

3443
= 1.24663.

It’s not surprising that our computed value of x̄ is close to 3. The mean measures central tendency,
or average, and if we flip six (fair) coins, then we would expect that, on the “average” flip, half of
those coins (that is, three of them) should come up heads.

There is no equally simple, intuitive interpretation of standard deviation. However, there is a
good “reality check” on the number we obtained for s above. Namely: it’s known that, if data
has an approximate normal distribution, then all or nearly all of that data should fall within three

standard deviations of the mean. In mathematical terms this means that, for such a distribution,
most or all of the data lies in the interval (x̄� 3s,x̄+ 3s).

Is this the case for our coin-flip data set X? Here, we have

(x̄� 3s,x̄+ 3s) = (2.96922� 3⇥ 1.24663,2.96922 + 3⇥ 1.24663) = (�0.77067,6.70911).

Since all data values lie between 0 and 6 inclusive, this interval does, in fact, capture all of the
data – and does so without too much room to spare. That is, the interval does not overshoot the
actual range of data values by much. All of this tells us that our computed value of s is at least
in the right ballpark.

A different kind of histogram

A cornerstone of probability theory is the interpretation of probability as an area under a graph.
Such an interpretation allows the full force of Calculus – Riemann sums, antiderivatives, the
Fundamental Theorem, and so on – to be brought to bear on the study of probability.

Histograms, as considered above, are a first step towards realizing this interpretation. To go
further, we will next need to rescale, or renormalize, these histograms, through the concept of
relative frequency density (also called probability density). Here’s the definition.

Definition 6.1.2. Let X be a data set, consisting of n real number data points. Consider any
bin, meaning simply an interval of real numbers. Let F denote the number of data points in X
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that lie in the bin, and let B denote the length of the bin. Then we define the relative frequency

density of the bin, denoted RFD, by the formula

RFD =
F

B ⇥ n
. (6.1.1)

In short, the relative frequency density of a bin is the number of data points in that bin, divided
by the product of the length of the bin and the size of the data set. (Strictly speaking RFD, for
a given data set X, is a function of bin b: RFD = f(b).)

Before discussing the importance of relative frequency density, we make the definition concrete by
means of an example.

Example 6.1.1. Consider a data set X of n = 68 exam scores, distributed as follows.

Bin F RFD = F/(B ⇥ 68)

[40,60) 11 11/(20⇥ 68) = 0.0081
[60,70) 16 16/(10⇥ 68) = 0.0235
[70,80) 14 14/(10⇥ 68) = 0.0206
[80,85) 13 13/(5⇥ 68) = 0.0382
[85,90) 9 9/(5⇥ 68) = 0.0265
[90,100) 5 5/(10⇥ 68) = 0.0074

We can draw a relative frequency density histogram, which is like the histograms drawn above, but
now, the vertical axis denotes relative frequency density.

Figure 6.3. A relative frequency density histogram

Let’s now see why relative frequency density is such a useful construct. To do this, we take the
above definition (6.1.1) of RFD, and multiply both sides by B, to get

RFD⇥ B =
F

n
. (6.1.2)
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Let’s look carefully at both sides of equation (6.1.2). The left-hand side gives the height times the
baselength – that is, the area – of the RFD histogram “bar” that lies over the range in question.
See Figure 6.3 above.

The quantity F/n on the right-hand side of (6.1.2) gives the number of points in X that lie in
the given bin, divided by the total number of points in X. This quotient is just the fraction, or
proportion, of the data that lies in the given bin. Or, put differently: F/n is the probability that
a data point in X, chosen at random, lies in the given range.

Let’s write P (a  x < b) to denote the probability that a data point in X, chosen at random, lies
in the interval [a,b). Since the two sides of (6.1.2) are, in fact, equal, we then have the following
conclusion.

In a relative frequency density histogram, the area of a bar
over an interval [a,b) equals P (a  x < b).

Relationship between area and probability, in an RFD histogram

The bottom line is this: by plotting relative frequency density (rather than just frequency) on
the vertical axis, we obtain histograms where area represents probability. This is a powerful idea,
which we will exploit more fully in the next section.

In the meantime, we note that this idea can be applied “several bars at a time.” For example,
using the data and histogram from Example 6.1.1 above, we can compute that

P (60  x < 85) = area enclosed by the bars covering the range [60,85)

= sum of areas of bars over [60,70), [70,80), and [80,85)

= sum of (height times baselength) of these bars
= sum of (RFD times baselength) of these bars
= (0.0235⇥ 10) + (0.0206⇥ 10) + (0.0382⇥ 5) = 0.6320.

That is, 63.2% of the exam scores lie in the interval [60,85).

Of course, we could have argued more simply. Specifically, we could have used the relative fre-
quency density table above to conclude that the proportion of data in [60,85) is (16+14+13)/68 =
0.632353. Example 6.1.1 helps to illustrate the mechanics of Definition 6.1.1, but the real value of
relative frequency density will not be seen until the next section, where we use this construct in
contexts where we can’t simply “count data points.”

In any case, our computation of P (60  x < 85) has taken advantage of the fact that the interval
[60,85) is precisely spanned by three of our given bins. Were this not the case, we might only be
able to approximate probabilities. For example, given the above information concerning our set X
of exam scores, we might estimate that
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P (63  x < 82) ⇡ area enclosed by the bars covering the range [63,82)

= sum of areas of bars over [63,70), [70,80), and [80,82)

= sum of (height times baselength) of these bars
= sum of (RFD times baselength) of these bars
= (0.0235⇥ 7) + (0.0206⇥ 10) + (0.0382⇥ 2) = 0.44.69.

So approximately 44.69% of the exam scores lie in the interval [63,82).

The above answer is approximate because we don’t know that the exam scores are evenly dis-
tributed across each bin. For example, knowing that 16 data points lie in the interval [60,70), of
length 10, clearly does not imply that 0.7 ⇥ 16 = 11.2 data points lie in the interval [63,70), of
length 7.

We could get better estimates if we had narrower bins. In the next section, we’ll consider bins
that can, at least in theory, be made arbitrarily thin. This will lead us to the study of probability

density functions, which are central to probability theory and statistical inference.


