
Chapter 5

Techniques of Integration

Chapter 4 introduced the integral. There it was defined numerically, as the limit of approximating
Riemann sums. Evaluating integrals by applying this basic definition tends to take a long time
if a high level of accuracy is desired. If one is going to evaluate integrals at all frequently, it is
thus important to find techniques of integration for doing this efficiently. For instance, if we
evaluate a function at the midpoints of the subintervals, we get much faster convergence than if
we use either the right or left endpoints of the subintervals.

A powerful class of techniques is based on the observation made at the end of Chapter 4, where we
saw that The Fundamental Theorem of Calculus gives us a second way to find an integral, using
antiderivatives. While a Riemann sum will usually give us only an approximation to the value of
an integral, an antiderivative will give us the exact value. The drawback is that antiderivatives
often can’t be expressed in closed form – that is, as a formula in terms of named functions. Even
when antiderivatives can be so expressed, the formulas are often difficult to find. Nevertheless,
such a formula can be so powerful, both computationally and analytically, that it is often worth
the effort needed to find it. In this chapter, we will explore several techniques for finding the
antiderivative of a function given by a formula.

5.1 Antiderivatives

Definition

Recall that we say F is an antiderivative of f if F 0 = f . Here are some examples.

function: x
2 1/y sin(u) 2 cos(t) sin(t) 2z

l l l l l

antiderivative:
x
3

3
ln y � cos(u) sin2(t)

2z

ln 2

Notice that you go up (") from the bottom row to the top by carrying out a differentiation.
To go down (#) you must “undo” that differentiation. The process of reversing, or undoing, a
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238 CHAPTER 5. TECHNIQUES OF INTEGRATION

differentiation is called antidifferentiation. You should differentiate each function on the bottom
row to check that it is an antiderivative of the function above it.

While a function can have only one derivative, it has many antiderivatives. For example, the
functions 1� cos(u) and 99� cos(u) are also antiderivatives of the function sin(u), since

d

du
[1� cos(u)] = sin(u) =

d

du
[99� cos(u)].

In fact, every function F (u) = C� cos(u) is an antiderivative of f(u) = sin(u), for any constant C
whatsoever. This observation is true in general. That is, if F is an antiderivative of a function f ,
then so is F +C, for any constant C. This follows from the addition rule for derivatives, because
if F 0 = f , then

(F + C)0 = F
0 + C

0 = F
0 + 0 = f ;

that is, (F + C)0 = f as well.

Remark 5.1.1. It is tempting to claim the converse – that every antiderivative of f is equal to
F +C, for some appropriately chosen value of C. In fact, you will often see this statement written.
The statement is true, though, only for continuous functions – functions with no breaks in their
domains. If the function f does have breaks, then there will be more antiderivatives than those
of the form F + C for a single constant C. Instead, over each piece of the domain of f , F can
be modified by a different constant and still yield an antiderivative for f . Exercises 12 and 13 at
the end of this section explore this for a couple of cases. If f is continuous, though, F + C will
cover all the possibilities, and we sometimes say that F + C is the antiderivative of f . For the
sake of keeping a compact notation, we will even write this when the domain of f consists of more
than one interval. You should understand, though, that in such cases, over each piece F can be
modified by a different constant.

For future reference, we collect a list of basic functions whose antiderivatives we already know.
Remember that each antiderivative in the table can have an arbitrary constant added to it.

function f(x) antiderivative F (x)

x
p

x
p+1

p+ 1
, p 6= �1

sin(ax) �cos(ax)

a
, a 6= 0

cos(ax)
sin(ax)

a
, a 6= 0

e
ax

e
ax

a
, a 6= 0

b
x

b
x

ln b
, b > 0

1

x
ln(|x|)
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All of these antiderivatives are easily verified, by differentiating the function F on the right-hand
side of any given row, and checking that you get the corresponding function on the left. For
example,

d

dx


�cos(ax)

a

�
= �1

a

�
�a sin(ax)

�
= sin(ax),

which verifies the second row of the table.

The last row of the table merits some explanation. It wouldn’t be correct to say that ln(x) is
always an antiderivative of 1/x: for one thing, ln(x) is not even defined for x < 0, while 1/x is.
We’d like to find a function F such that F

0(x) = 1/x whenever 1/x makes sense. We claim that
F (x) = ln(|x|) does the job. To see this, note first that F (x) does make sense for all x 6= 0, just
as 1/x does. Next, we differentiate F (x) by considering two cases:

(i) If x > 0, then |x| is the same as x, so

d

dx
[ln(|x|)] = d

dx
[ln(x)] =

1

x
,

as desired. Next,

(ii) If x < 0, then |x| is the same as �x, so

d

dx
[ln(|x|)] = d

dx
[ln(�x)] =

1

�x

d

dx
[�x] =

1

�x
· (�1) =

1

x
.

Together, (i) and (ii) tell us that d[ln(|x|)]/dx = 1/x whenever x 6= 0, and this confirms the last
row of our table.

There are a couple of other functions that don’t appear in the above table, but whose antideriva-
tives are often needed:

function antiderivative

1p
1� x2

1

1 + x2

arcsin(x)

arctan(x)

The antiderivatives here are inverse trigonometric functions. The implied differentiation formulas

d

dx
[arcsin(x)] =

1p
1� x2

and
d

dx
[arctan(x)] =

1

1 + x2

were derived in Section 3.6. (See Example 3.6.2, and Exercise 11 of that section.)

Notation

As we’ve noted previously – see Example 4.5.2(v) – there are functions that, even though they
are expressible in terms of familiar quantities, do not have antiderivatives that can be written in
closed form. This is not necessarily to say that these functions don’t have antiderivatives.
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To see this, let p(t) be any function that is not too “weird” on an interval [a,b]. (A function that is
continuous on this interval – that is, essentially, it has no breaks or jumps there – is good enough.)
Consider the accumulation function

E(T ) =

Z
T

a

p(t) dt.

As we’ve seen in Section 4.2, we have E
0(T ) = p(T ) for any number T between a and b. That is:

E is an antiderivative of p for such values of T .

The point is that the definite integral gives us a means of defining antiderivatives. For example,

F (T ) =

Z
T

0

e
�t

2
/2
dt (5.1.1)

is an antiderivative of f(t) = e
�t

2
/2, even though, again, there’s no “closed” formula for this

antiderivative. (The formula (5.1.1) is not considered “closed” because it requires the integral
sign.)

The connection between antiderivatives and integrals is so pervasive that the integral sign – with
the “limits of integration” omitted – is also used to denote an antiderivative:

Notation: The most general antiderivative of f is denoted
Z
f(x) dx.

Remark 5.1.2. By “the most general antiderivative of f ,” we mean “the set of all possible an-
tiderivatives of f .” So strictly speaking,

R
f(x) dx denotes not a single function, but a set of

functions. Generally speaking, though, we can find all elements of this set by just finding one
element, and then adding an “arbitrary constant” +C to that single element. See Remark 5.1.1
above.

With this new notation, the antiderivatives we have listed so far can be written in the following
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form.
Z

x
p
dx =

x
p+1

p+ 1
+ C (p 6= �1)

Z
sin(ax) dx = �cos(ax)

a
+ C (a 6= 0)

Z
cos(ax) dx =

sin(ax)

a
+ C (a 6= 0)

Z
e
ax
dx =

e
ax

a
+ C (a 6= 0)

Z
b
x
dx =

b
x

ln b
+ C (b > 0)

Z
1

x
dx = ln(|x|) + C

Z
1p

1� x2
dx = arcsin(x) + C

Z
1

1 + x2
dx = arctan(x) + C

The integral sign
R

now has two distinct meanings. Originally, it was used to describe the number

Z
b

a

f(x) dx,

which is a signed area, or a limit of a sequence of Riemann sums. Because this integral has a
definite numerical value, it is called the definite integral. In its new meaning, the integration
sign is used to describe the antiderivative

Z
f(x) dx,

which is a function (really, a set of functions), not a number. To contrast the new use of
R

with
the old, and to remind us that the new expression is a variable quantity, it is called the indefinite
integral. The function that appears in either a definite or an indefinite integral is called the
integrand. The terms “antiderivative” and “indefinite integral” are completely synonymous. We
will tend to use the former term in general discussions, using the latter term when focusing on the
process of finding the antiderivative.

Because an indefinite integral represents an antiderivative, the process of finding an antiderivative
is sometimes called integration. We’ve also used this term to designate the process of finding a
definite integral. Thus the term integration, as well as the symbol for it, has two distinct meanings.

Using Antiderivatives

According to the fundamental theorem, we can use an indefinite integral to find the value of a
definite integral – and this largely explains the importance of antiderivatives. In the language of
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indefinite integrals, the statement of the fundamental theorem in the box on page 229 takes the
following form.

Z
b

a

f(x) dx = F (b)� F (a), where F (x) =

Z
f(x) dx.

Example 5.1.1. Find
Z 4

1

x
2
dx.

Solution. We have Z
x
2
dx =

1

3
x
3 + C.

It follows that
Z 4

1

x
2
dx =

✓
1

3
x
3 + C

◆����
4

1

=

✓
1

3
⇥ 43 + C

◆
�
✓
1

3
⇥ 13 + C

◆
=

64

3
+ C � 1

3
� C = 21.

Note that, in the above example, the two appearances of “+C” cancel each other. This cancellation
will occur no matter what function we are integrating, since

(F (x) + C)
��b
a
= (F (b) + C)� (F (a) + C) = F (b) + C � F (a)� C = F (b)� F (a) = F (x)

��b
a
.

This implies that it does not matter which value of C we choose to do the calculation. Usually,
we just take C = 0 (which amounts to the procedure we followed in Section 4.5).

Example 5.1.2. Find
Z

⇡/2

0

cos(t) dt.

Solution. This time, the indefinite integral we need is
Z

cos(t) dt = sin(t) + C.

The value of the definite integral is therefore
Z

⇡/2

0

cos(t) dt = sin(t)
��⇡/2
0

= sin ⇡/2� sin 0 = 1 + C � 0� C = 1.

Finding Antiderivatives

What we have seen above is this:

The statement F 0(x) = f(x) is the same

as the statement
Z

f(x) dx = F (x) + C.

Relationship between indefinite integrals and derivatives
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Because of this fact, we can verify many statements about antidifferentiation by considering the
corresponding differentiation facts.

In particular, the following basic indefinite integral rules can be verified using analogous rules for
derivatives.

Z
kf(x) dx = k

Z
f(x) dx (constant multiple rule);

Z
(f(x) + g(x)) dx =

Z
f(x) dx+

Z
g(x) dx (sum rule).

(Here, k is a constant.)

For example, the sum rule for indefinite integrals may be demonstrated as follows. Let F be an
antiderivative for f , and G an antiderivative for g. Then by the above boxed statement,

Z
f(x) dx+

Z
g(x) dx = (F (x) + C1) + (G(x) + C2) = F (x) +G(x) + C, (5.1.2)

where C1 and C2 are arbitrary constants, and C = C1 + C2. (Since C1 and C2 can be anything,
so can C; so C is an arbitrary constant as well.) But by the sum rule for differentiation, the
derivative of the right-hand side of (5.1.2) equals F

0(x) + G
0(x) = f(x) + g(x), so again by the

above boxed statement, Z
(f(x) + g(x)) dx = F (x) +G(x) + C. (5.1.3)

The right-hand sides of equations (5.1.2) and (5.1.3) are equal, so the left-hand sides are equal
too, and this is what we wanted to show.

Example 5.1.3. This example illustrates the use of both the addition and the constant multiple
rules.

Z
(7ex + cos(x)) dx =

Z
7ex dx+

Z
cos(x) dx

= 7

Z
e
x
dx+

Z
cos(x) dx

= 7ex + sin(x) + C.

The next example illustrates how initial value problems of the form

F
0(x) = f(x), F (0) = y0 (5.1.4)

may be solved using indefinite integrals.

Example 5.1.4. Find a function F such that

F
0(x) = 3x2 � sin(x), F (0) = 7.
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Solution. We are looking for a function F of x whose derivative is a given function of x, and
whose value at a certain point is a given number. The general strategy for such problems is to
first find any and all functions with the indicated derivative, and then to select, among all of those
functions, the one that satisfies the given initial condition.

In other words, the first step is to find the most general antiderivative, which is to say the indefinite

integral, of the given function. That is: the equation F
0(x) = 3x2 � sin(x) tells us that

F (x) =

Z
(3x2 � sin(x)) dx = x

3 + cos(x) + C. (5.1.5)

Now, we need only figure out what C is.

To do so, we substitute the condition F (0) = 7 into equation (5.1.5), to get

7 = F (0) = 03 + cos(0) + C = 1 + C.

Solving for C gives C = 7� 1 = 6. We plug this value of C back into (5.1.5) to get our complete
solution:

F (x) = x
3 + cos(x) + 6.

Note that the above example, and the kind of problem described by (5.1.4), represent a very special
type of initial value problem, where a derivative is expressed exclusively in terms of the independent

variable. We’ve previously encountered examples where a derivative is expressed exclusively in
terms of the dependent variable (and some parameters) – for example, the exponential growth
equation P

0 = kP , and the the logistic equation P
0 = kP (1� P/b). In Section 5.3, we’ll examine

certain situations where both independent and dependent variables are involved in the formula for
the derivative.

Also in the following sections, we will develop the antidifferentiation rules that correspond to the
chain rule and to the product rule. They are called integration by substitution and integration by

parts , respectively.

Because indefinite integrals are often difficult to calculate, reference manuals in mathematics
and science often include tables of integrals. There are sometimes many hundreds of individual
formulas, organized by the type of function being integrated.

Computers are having a major impact on integration techniques. And computer software packages
that can find any existing formula for a definite integral have become widespread, and have had
a profound impact on the importance of integration techniques. Just as hand-held calculators
have rendered obsolete many traditional arts, like using logarithms for performing multiplications
or knowing how to interpolate in trig tables, so have computers hastened a decrease in emphasis
on humans’ fluency with integration techniques. While some will continue to derive pleasure
from becoming proficient in these skills, for most users it will generally be much faster, and more
accurate, to use an appropriate software package. Nevertheless, for those going on in mathematics
and the sciences, it will still to be useful to be able to perform some of the simpler integrations by
hand reasonably rapidly. And perhaps more importantly, some experience with concrete integral
computations helps create a solid foundation for our understanding of the ideas and abstractions.

The subsequent sections of this chapter develop the most commonly needed techniques employed
for such computations.
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Exercises

Part 1: Basic antidifferentiation

1. Find a formula for each of the following indefinite integrals. For each integral, verify that your
result is correct by differentiation. Example:

Z
4 cos(3x+ 2) dx =

4

3
sin(3x+ 2) + C.

Verification:

d

dx


4

3
sin(3x+ 2) + C

�
=

4

3

d

dx

⇥
sin(3x+ 2)

⇤
+ 0 =

4

3
· cos(3x+ 2) · 3 = 4 cos(3x+ 2). X

(a)
Z

3x dx

(b)
Z

3u du

(c)
Z

e
z
dz

(d)
Z
(5t4 + 5 · 4t) dt

(e)
Z ✓

7y +
1

y

◆
dy

(f)
Z ✓

7y � 4

y2

◆
dy

(g)
Z
(5 cos(w)� cos(5w)) dw

(h)
Z

dx (This just means
Z

1 dx.)

(i)
Z

e
z+2

dz

(j)
Z

cos(4x� 2) dx

(k)
Z

5

1 + r2
dr

(l)
Z

1

1 + 4s2
ds (Hint: guess and check, using the fact

that d[arctan(s)]/ds = 1/1 + s
2.)

(m)
Z
(2x+ 3)7 dx

(n)
Z

cos(1� x) dx

2. Verify, by differentiation, that the antiderivatives given in the list on page 241 are correct.

3. Find
Z

(a+ by) dy, where a and b are constants.

Part 2: Initial value problems

4. (a) Solve the initial value problem

F
0(x) = 7, F (0) = 12.

(b) Solve the initial value problem
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G
0(x) = 7, G(3) = 1.

(c) Do F (x) and G(x) differ by a constant? If so, what is the value of that constant?

5. (a) Find an antiderivative F (t) of f(t) = t+ cos(t) for which F (0) = 3.

(b) Find an antiderivative G(t) of f(t) = t+ cos(t) for which G(⇡/2) = �5.

(c) Do F (t) and G(t) differ by a constant? If so, what is the value of that constant?

6. Solve the initial value problem

dy

dx
=

1

1 + x2
, y(0) = 4.

7. Solve the initial value problem

dp

dq
= 4q � 3

q2
, p(1) = 6.

Part 3: Guessing an checking (and checking and guessing)

For part (a) of each of the exercises below, note that the instruction “Verify that F (x) is an
antiderivative of f(x)” simply means “show that F 0(x) = f(x).” Subsequent parts of these exercises
ask you to either to (i) elaborate on your answer from part (a), or (ii) to adjust your answer from
part (a), to obtain a function that has the indicated derivative.

8. (a) Verify that (1 + x
3)10 is an antiderivative of 30x2(1 + x

3)9.

(b) Find an antiderivative of x2(1 + x
3)9.

(c) Find an antiderivative of x2 + x
2(1 + x

3)9.

9. (a) Verify that x ln(x) is an antiderivative of 1 + ln(x).

(b) Find an antiderivative of ln(x). (Do you see how you can use part (a) to find this antideriva-
tive?)

10. Recall that F (y) = ln(y) is an antiderivative of 1/y for y > 0. According to the text, every

antiderivative of 1/y over this domain must be of the form ln(y) + C for an appropriate value of
C.

(a) Verify that G(y) = ln(2y) is also an antiderivative of 1/y.
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(b) Find C so that ln(2y) = ln(y) + C.

11. (a) Verify that � cos2(t) is an antiderivative of 2 cos(t) sin(t).

(b) Since you’ve already seen that sin2(t) is an antiderivative of 2 cos(t) sin(t) (see the discussion
at the very beginning of this section), you should be able to show that

� cos2(t) = sin2(t) + C

for an appropriate value of C. What is C?

Part 4: Miscellaneous

12. The function ln(|x|) + C is an antiderivative of 1/x, for any constant C, but there are more
antiderivatives. This can happen because the domain of 1/x is broken into two parts. To see this,
let

G(x) =

(
ln(�x) if x < 0,

ln(x) + 1 if x > 0.

(a) Explain why there is no value of C for which

ln(|x|) + C = G(x).

This shows that the functions ln(|x|) + C do not exhaust the set of antiderivatives of 1/x.

(b) Construct two more antiderivatives of 1/x and sketch their graphs. What is the general form
of the new antiderivatives you have constructed? (A suggestion: you should be able to use two
separate constants C1 and C2 to describe the general form.)

13. In the list on page 241, the antiderivative of xp is given as

1

p+ 1
x
p+1 + C.

For some values of p this is correct, with only a single constant C needed. For other values of p,
though, the domain of xp will consist of more than one piece, and

1

p+ 1
x
p+1 can be modified by

a different constant over each piece. For what values of p does this happen?

14. Find F
0(x) for the following functions. In parts (a), (b), and (d) do the problems two ways:

by finding an antiderivative, and by using The Fundamental Theorem to get the answer without
evaluating an antiderivative. Check that the answers agree.

(a) F (x) =

Z
x

0

(t2 + t
3) dt.
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(b) F (x) =

Z
x

1

1

u
du.

(c) F (x) =

Z
x

1

v

1 + v3
dv.

(d) F (x) =

Z
x
2

0

cos(t) dt.

(e) F (x) =

Z
x
2

1

v

1 + v3
dv. [Hint: let u = x

2 and use the chain rule.]

Comment: It may seem that parts (c) and (e) are more difficult than the others. However, there
is a way to apply the fundamental theorem of calculus here to get answers to parts (c) and (e)
quickly and with little effort.

15. Consider the two functions

F (x) =
p
1 + x2 � 1 and G(x) =

Z
x

0

tp
1 + t2

dt.

(a) Show that F and G both satisfy the initial value problem

y
0 =

xp
1 + x2

, y(0) = 0.

(b) Since an initial value problem typically has a unique solution, F and G should be equal.
Assuming this, determine the exact value of the following definite integrals.

Z 1

0

tp
1 + t2

dt,

Z 2

0

tp
1 + t2

dt,

Z 5

0

tp
1 + t2

dt.

16. Find the area under the curve y = x
3 + x for x between 1 and 4.

17. Find the area under the curve y = e
3x for x between 0 and ln 3.


