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4.4 The Definite integral

Let f be a function that’s non-negative on an interval [a,b]. Then, as we’ve seen in earlier sections,
in a variety of circumstances, the area under the graph of f, over [a,b], can be approximated
by adding up areas of rectangles, whose bases lie on consecutive subintervals of [a,b], and whose
heights are given by values of f at “sampling points” xy.
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Figure
4.11. Approximating the area under a graph
That is, the area A under f, over this interval, can be approximated by a Riemann sum:
A f(z1)Azy + f(xe)Axg + -+ - + f(2,)Ax,,. (4.4.1)

Intuitively, the more rectangles we use, and the narrower their baselengths, the closer these rectan-
gles come to filling up the space under the graph precisely. So, at least intuitively, as the number
n of rectangles increases to infinity, and all of the baselengths Axj shrink to zero, our Riemann
sum should converge ezactly to the area A in question.

When this happens, we give a special name, and a special symbol, to this area.

Definition. Suppose all the Riemann sums for a function y = f(z) on
an interval [a, b] get arbitrarily close to a single number when the lengths
Axy, ..., Az, are made small enough. Then this number is called the
definite integral (or sometimes just integral) of f(z) on [a,b], denoted

/abf(:v) dx.
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Equation (4.4.1) then tell us that

b
/ flz)dx = f(x1)Axy + f(x2)Azo + -+ + f(x,) Ay, (4.4.2)

where, again, the right-hand side of (4.4.2) is a Riemann sum for f on [a,b]. But it tells us more:
it says that, in fact,

b
/ f(x)de = A!Dimo(f(wl)Axl + f(@2)Azy + -+ + f(2,)Axy), (4.4.3)
@ for gﬁk

provided the conditions stated in the definition are met.

The function f is called the integrand. There are functions f whose Riemann sums don’t converyge,
so that the integral in question does not exist. But such functions are rare. All the functions that
typically arise in context, and nearly all the functions we study in calculus, do have integrals.

Notice that the definition doesn’t speak about the choice of sampling points. The condition that
the Riemann sums be close to a single number involves only the subintervals Axy, Axy, ..., Ax,.
This is important; it says once the subintervals are small enough, it doesn’t matter which sampling
points xj, we choose — all of the Riemann sums will be close to the value of the integral. (Of course,
some will still be closer to the value of the integral than others.)

An integral is an area under a curve, as described above. But we are not interested in integrals
simply for the sake of studying areas of geometric objects. We study integrals largely because of
their relevance to accumulation functions. Consider, for example, how we expressed the energy
consumption of a town over a 24-hour period. The basic relation

energy = power X elapsed time

could not be used directly, because power demand varies. Indirectly, though, we found that we
could use this relation to build a Riemann sum for power demand p over time. This gave us an
approximation:

energy =~ p(t1) Aty + p(ta) Aty + - + p(t,)At, megawatt-hours.

As these sums are refined (that is, more and more, narrower and narrower, rectangles are used),
two things happen. First, they converge to the true level of energy consumption. Second, they
converge to the integral — by the definition of the integral. Thus, energy consumption is described
exactly by the integral

24
energy = / p(t)dt megawatt-hours (4.4.4)
0

of the power demand p. In other words, energy is the integral of power over time.

In Example 4.2.1 we asked how far a car would travel in 5 hours if we knew its speed was s(t)
miles per hour at time t. We estimated that distance using Riemann sums for s(¢). Reasoning
just as we did for energy, we conclude that the exact distance is given by the integral

5
distance:/ s(t)dt miles. (4.4.5)
0
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In other words, distance is the integral of speed over time.

By similar reasoning, work is the integral of force over distance. (See Part 1 of the Exercises for
Section 4.2.) In general, whenever E is an accumulation function for a function p on an interval
[a,b], we have

AE on [a,5] = / (@) da. (4.4.6)

The energy integral (4.4.4) has the same units as the Riemann sums that approximate it. Its units
are the product of the megawatts used to measure p and the hours used to measure ¢t. The units
for the distance integral (4.4.5) are the product of the miles per hour used to measure speed and
the hours used to measure time. In general, the units for the integral in (4.4.6) are the product of
the units for f and the units for x.

The process of evaluating an integral is called integration. Integration means “putting together.”
To see why this name is appropriate, notice that we determine energy consumption over a long
time interval by putting together a lot of energy computations p - At over a succession of short
periods.

Some integrals can be evaluated by simple geometric considerations. Let’s consider a couple of
integrals that can be determined in this way — and one that can’t, to set the stage for the next
section.

Example 4.4.1. Evaluate each of the following integrals using ideas from basic geometry, or
explain why this is not possible. (If it helps, sketch the indicated function over the given interval.)

(i) /0 54dx (ii) /0 54xdx (iii) /0 54x2dx

Solution. (i) This integral represents the area under the graph of f(x) = 4, a constant function
of height 4, over the interval [0,5]. The region in question is just a rectangle of baselength 5 (=
the length of [0,5]), and height 4 (= the height of f(z)). So f05 ddr =5 x4 =20.

(ii) This integral represents the area under the graph of f(x) = 4x, a linear function, over the
interval [0,5]. The region in question is just a triangle of baselength 5 (= the length of [0,5]) and
height 4 x 5 = 20 (= the height of f(z) at # = 5). So [ 4w dzr = 1 x 5 x 20 = 50.

(iii) This integral represents the area under the graph of f(z) = 422, a parabola, over the interval
[0,5]. The region in question has a “curved top;” this region doesn’t look like any familiar shape
from high school geometry. For now, we have no immediate way of determining its area.

Note that, for part (iii) of the above example, we could certainly estimate the area in question,
to any desired accuracy, using Riemann sums. For example, applying the above program RIE-
MANN.sws to a midpoint approximation with f(x) = 422, a = 0, b = 5, and n = 5,000 gives us
the approximation RS = 166.66666 to this integral.

In the next section, we’ll see how to evaluate this integral exactly, and we’ll find that f05 4% do =
500/3, which, rounded to five decimal places, equals 166.66667.
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The integral of a (sometimes) negative function

Up to this point, we have been dealing with a function y = f(x) that is never negative on the
interval [a,b]. Its graph therefore lies entirely above the x-axis. What happens if f does take on
negative values on this interval? To answer, we consider the graph below.
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Figure 4.12. A function that’s negative on part of an interval
[a,b], and a representative rectangle

N

The figure illustrates the fact that, if f(z) < 0 on some portion of the interval [a,b], then some
of the summands f(zx)Axy in the Riemann sum of (4.4.2) will, typically, be negative. And these
negative contributions will impact the limit on the right-hand side of (4.4.3).

So let’s imagine a series of Riemann sum rectangles spanning [a,b], in Figure 4.12 above. And let’s
think about which rectangles lie above the z-axis, and therefore contribute a positive amount to
the Riemann sum, and which rectangles lie below the z-axis, and therefore contribute a negative
amount to the Riemann sum. If we then consider what happens as all of these rectangles become
very narrow, we are led to the following conclusion.

b
/ f(x) dx = the signed area between

the graph of y = f(«) and the x-axis, on the interval [a,b],
meaning the sum of areas of regions above the x-axis,
minus the sum of areas of regions below the x-axis.

Geometric interpretation of the integral, for functions
that may sometimes be negative on an interval

Example 4.4.2.
(i) Consider the graph of y = z over the interval [—2,4].
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The upper region is a triangle whose area is % x 4 x 4 = 8. The lower region is another triangle;
its area % X 2 x 2 = 2. Thus, the signed area between the graph of y = f(z) and the z-axis, on
the interval [—2,4], is 8 — 2 = 6. It follows that

4
/ rdr = 6.
—2

You should confirm that Riemann sums for f(z) = « over the interval [—2, 4] converge to the value
6. See the Exercises below. (We’ll evaluate this integral in another way in the next section.)

(ii) / sin(x) dx = 0, since the areas of the two “lobes” — one above the z-axis and one below —
—T

cancel.
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Again, you should confirm this result using Riemann sums. (And we’ll verify it using another
approach in the next section.)

Integration Rules

Just as there are rules that tell us how to find the derivative of various combinations of functions,
there are other rules that tell us how to find the integral. Here are two rules that are exactly
analogous to differentiation rules:
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b b
/ f(z) +g(x dx—/ f(z dx—l—/ g(x)dx (sum rule for integrals);

/ / f(z)dx (constant multiple rule for integrals).

The first rule says that the signed area of a sum of two functions is the sum of the signed areas of
the original two functions. The second rule says that, if you rescale a function by a factor of ¢ in
the vertical direction, then you rescale its signed area by that same factor. (And also that, if you
multiply a function by a negative number ¢, then the new function’s signed area has the opposite
sign from that of the original function.)

Example 4.4.3. Use geometry, together with the sum and constant multiple rules, to compute
/ (7 — 3sin(z)) dx.

Solution. By the above two rules,

/Z(?-gsin(x))dxz/i?dﬂ/i(—ssm(x))dx:/Z?dx—?)/trsm(x)dx.

The integral on the far right equals zero, by Example 4.4.2(ii) above. Moreover, fjﬂ Tdr =27 xT =
147, by the same idea as was used in Example 4.4.1(i) above. So

/ (7 —3sin(z))dr = 147 — 3 x 0 = 147.
Here are two rules that have no direct analogue in differentiation.

Comparison rule for integrals: If f(z) < g(x) for every x in the interval [a, b], then

/abf@;) iz < /abg(:c) da.

Juxtaposition rule for integrals: If ¢ is a point somewhere in the interval [a, b], then

/abf(:v)dx:/acf(m)dx+/cbf(x)dx

(The sum rule tells us how integrals “add vertically;” the juxtaposition rule tells us how they “add
horizontally.”)

If you visualize an integral as an area, you can see why the above two rules are true. (We've
already seen the juxtaposition rule in action, cf. Exercise 6(c) of Section 6.3.)

Our last rule allows us to do things like “integrate from 7 to 2,” or more generally to integrate
from a larger number to a smaller one. It says
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a b
/ f(z)dx = —/ f(z)dx (reversal rule for integrals).
b a

So for instance, f50 4z dx = —50, by the reversal rule and by Example 4.4.1(ii) above.

One way to think of the reversal rule is as follows: suppose a < b. If we imagine that integrating f
from a to b is like traveling along [a,b] from left to right, and painting the regions bounded by the
graph of f, then integrating from b to a is like running that process in reverse, and “unpainting”
those areas.

Still, from the point of view of mathematics and its applications, it might seem unnecessary to
define integrals like f50 4z dx. As we will see, though, integrals from larger to smaller numbers do
arise — for example, in integration by substitution, which we will consider in a later section.

Exercises
Part 1: Evaluating integrals geometrically

For these exercises, you should refer to the three examples in the section above, as well as the
above integration rules (in particular, the sum rule, constant multiple rule, juxtaposition rule, and
reversal rule).

1. Determine the values of the following integrals.

(a) /2 Y (b) /2 ards (©) /1 Cardi (d) / " (4sin(z) + 3) do

5 -

() / " (sin(x) + 32) dz (f) /ﬁ (sin(x) + 32) da (&) / 42y ds

—Tr

2. (a) Sketch the graph of

(@) = 7 if 1<z<5,
IWI=1 =3 if 5<z<10.

7 10 10
(b) Determine / g(x)dx, / g(x) dx, and / g(x) de.
1 7 1

3. Repreat Exercise 2 above for

(2) = r—2 if 1<z<6,
g\r) = 4 if 6 <z <10.

4. Below is a picture of the graph of a function y = f(z). Use geometry and properties of
integrals to evaluate the indicated definite integrals.
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5. (a) Sketch, by hand or computer, the graphs of y = cos(z) and y = 5+cos(x) over the interval
[0, 47].

4m
(b) Find / cos(z) dx by visualizing the integral as a signed area.
0

4m 4w
(c) Find / 5 + cos(z) dx. Why does / 5 dx have the same value?
0 0

Part 2: Integrals and Riemann sums

6. Evaluate each of the following integrals, using the program RIEMANN.sws, and midpoint
approximations with 2,000 rectangles. (Note: in Sage, 7 is entered as pi.)

(a) / " (b) / " sin(x) da

—92 -
How do your results compare to those of Example 4.4.2 above?

7. Using the program RIEMANN.sws and midpoint approximations, refine Riemann sums with
n = 20, 40, 60, 80, 100, 150, 200, and 500 rectangles, to determine the value of each of the following
integrals, accurate to four decimal places. What this means is: approximate each integral with
these larger and larger numbers of rectangles, until the fourth decimal place stabilizes (no longer
changes).



4.4. THE DEFINITE INTEGRAL 227

For each integral, please provide not only your estimate (to four decimal places), but also the
smallest number of rectangles you need before the fourth decimal place stabilizes. For example: if
40 rectangles give you 5.36614, 60 rectangles give you 5.36627, and the next couple of n give you
5.3662x (where x is any single digit), you would say “the estimate is 5.3662; it stabilizes after 60
rectangles.”

(a)/l4mdx (b)/;mdx (c)/ogcos(x)dx (01)/01 L g (e)/126_12dx

1+ 22 1423 v

8. A pyramid is 30 feet tall. The area of a horizontal cross-section x feet from the top of the
pyramid measures 222 square feet. What is the area of the base? What is the volume of the
pyramid, to the nearest cubic foot?
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