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4.3 Riemann Sums

In Example 4.1.5, we estimated energy consumption in a town by replacing the power function
p(t) by a step function. Let’s pause to describe that process in somewhat more general terms that
we can adapt to other contexts. The power graph, an approximating step function, and an energy
estimate are shown below.

Figure 4.8. Power demand in a town over a 24-hour period,

and an approximating step function

Using the above rectangles as approximations to the energy used on the corresponding subintervals,
we obtain yet another estimate to the energy used over the 24 hours:

energy used ⇡ p(t1)�t1 + p(t2)�t2 + · · ·+ p(t6)�t6

= 30⇥ 6 + 29⇥ 3 + 48⇥ 3 + 63⇥ 3 + 60⇥ 6 + 33⇥ 3

= 1,059 mwh. (4.3.1)

The height of the first step is 30 megawatts. This is the actual power level at the time t1 indicated
on the graph. That is, p(t1) = 30 megawatts. We found a power level of 30 megawatts by
sampling the power function at the time t1. The height of the first step could have been different
if we had sampled the power function at a different time. In general, if we sample the power
function p(t) at the time t1 in the interval �t1, then we would estimate the energy used during
that time to be

energy ⇡ p(t1)�t1 mwh.

Notice that t1 is not necessarily in the middle, or at either end, of the first interval. It is simply a
time when the power demand is representative of what’s happening over the entire interval.

We can describe what happens in the other time intervals the same way. If we sample the kth
interval at the point tk, then the height of the kth power step will be p(tk), and our estimate for
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the energy used during that time will be equal to the area of the kth rectangle:

energy ⇡ p(tk)�tk mwh.

We now have a general way to construct an approximation for the power function and an estimate
for the energy consumed over a 24-hour period. It involves these steps.

1. Choose any number n of subintervals, and let them have arbitrary positive widths �t1, �t2,
. . . , �tn, subject only to the condition

�t1 + · · ·+�tn = 24 hours.

2. Sample the kth subinterval at any point tk, and let p(tk) represent the power level over this
subinterval.

3. Estimate the energy used over the 24 hours by the sum

energy ⇡ p(t1)�t1 + p(t2)�t2 + · · ·+ p(tn)�tn mwh.

The expression on the right-hand side is called a Riemann sum for the power function p(t) on
the interval 0  t  24 hours. We’ve seen similar sums in the context of other accumulation
function calculations.

The work of Bernhard Riemann (1826–1866) has had a profound influence on contemporary
mathematics and physics. His revolutionary ideas about the geometry of space, for example, are
the basis for Einstein’s theory of general relativity.

The formal definition of Riemann sum, for an arbitrary function f(x), is as follows.

Definition. Suppose the function f(x) is defined for x in the
interval [a,b]. Then a Riemann sum for f(x) on [a,b] is an
expression of the form

f(x1)�x1 + f(x2)�x2 + · · ·+ f(xn)�xn.

The interval [a,b] has been divided into n subintervals whose
lengths are �x1, . . . , �xn, respectively, and for each k from 1
to n, xk is some point in the kth subinterval.

In other words: a Riemann sum for f(x) is exactly the kind of sum we’ve been using to approximate
accumulation functions for f(x).

Notice that once the function and the interval have been specified, a Riemann sum is determined
by the following data:
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• A decomposition of the original interval into subintervals (which determines the lengths
of the subintervals).

• A sampling point chosen from each subinterval (which determines a value of the function
on each subinterval).

A Riemann sum for f(x) is a sum of products of values of �x and values of y = f(x). If x and Units
y have units, then so does the Riemann sum; its units are the units for x times the units for y.
When a Riemann sum arises in a particular context, the notation may look different from what
appears in the definition just given: the variable might not be x, and the function might not be
f(x). For example, the energy approximation we considered at the beginning of the section is a
Riemann sum for the power demand function p(t) on [0, 24].

It is important to note that, from a mathematical point of view, a Riemann sum is just a number.
It’s the context that provides the meaning: Riemann sums for a power demand that varies over
time approximate total energy consumption; Riemann sums for a speed that varies over time
approximate total distance; Riemann sums for a force that varies over distance approximates total
work done. And so on.

The enormous range of choices in this process means there are innumerable ways to construct a
Riemann sum for a function f(x). However, we are not really interested in arbitrary Riemann
sums. On the contrary, we want to build Riemann sums that will give us good estimates for our
accumulation functions. Therefore, we will choose each subinterval length �xk so small that the
values of f(x) over that subinterval differ only very little from the sampled value f(xk). A Riemann
sum constructed with these choices will then differ only very little from the actual accumulation
function under consideration.

Let’s now consider a purely geometric application of Riemann sums.

Example 4.3.1. Approximate the area under the graph of f(x) =
p
x� 1, using a left endpoint

Riemann sum approximation with ten evenly spaced subintervals. By “left endpoint Riemann sum
approximation” we mean: use the left endpoint of each subinterval as your sampling point in that
interval.

Figure 4.9. f(x) =
p
x � 1 and a representative rectangle
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Solution. To keep the picture relatively uncluttered, we’ve drawn in a single representative
rectangle, in Figure 4.9 above, rather than all ten of the rectangles that will be used in the
approximation.

We’re told that all subinterval lengths �x1,�x2, . . . ,�x10 should be the same. Let’s denote this
common length by �x: we compute that

�x =
length of the interval [1,6]

number of subintervals
=

6� 1

10
= 0.5.

Also, we’re doing a left endpoint approximation. So our first sampling point x1 is the left endpoint
of our first subinterval; that is, x1 = 1. Our second sampling point x2 is the left endpoint of the
second subinterval; so x2 = 0.5, and so on all the way up to our tenth subinterval, whose left
endpoint is x10 = 5.5.

So our area, call it A, is approximated by the following Riemann sum:

A ⇡ f(x1)�x1 + f(x2)�x2 + · · ·+ f(x10)�x10

= �x(f(x1) + f(x2) + · · ·+ f(x10))

= 0.5(f(1) + f(1.5) + · · ·+ f(5.5))

= 0.5(
p
1� 1 +

p
1.5� 1 + · · ·+

p
5.5� 1)

= 0.5(0 + 0.707107 + 1 + 1.22474 + 1.41421 + 1.58114 + 1.73205 + 1.87083 + 2 + 2.12132)

= 6.82570. (4.3.2)

Later, we’ll see that the true area A equals 7.4536 (to four decimal places). So our approximation
is an underestimate. This can can also be seen from Figure 4.9 above: as the representative
rectangle illustrates, all of our left endpoint rectangles will undershoot the graph of f(x). So the
sum of their areas will be less than the area A we are trying to estimate.

More generally, as the above figure suggests, the following is true. On any interval [a,b] where
f(x) is increasing (and non-negative), any left endpoint Riemann sum approximation to f(x) will
underestimate the area under the graph of f(x), over that interval. Similar things happen when
f(x) is decreasing on an interval, and/or we use a right endpoint Riemann sum approximation.
You should think about whether the Riemann sums give underestimates or overestimates in each
of these cases.

The Sage program RIEMANN.sws, below, automates the left endpoint Riemann sum approxima-
tion of Example 4.3.1 above. The program has been written so that it may be easily modified, to
accommodate different functions f(x), different intervals [a,b], different numbers n of rectangles,
and even different varieties of sampling points (other than just left endpoints).
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Program: RIEMANN.sws
Left endpoint Riemann sums, with evenly spaced intervals

var ('x') # our variable is called x
f(x) = sqrt(x-1) # this is where you put your function
a = 1
b = 6
n = 10
Deltax = (b-a)/n # baselength of the rectangles

# The following formula gives you a left endpoint sum
RS = sum(f(a+(k-1)*Deltax)*Deltax for k in [1..n])
print round(RS,5) #prints the output rounded to 5 decimal places

It’s important to review the above program, to understand the purposes of the various lines. Such
an understanding will make it easy to adapt the program to other situations.

The purpose of the first five lines is clear. The sixth line expresses the following fact: if the interval
[a,b] is to be divided into n subintervals of equal length �x, then

�x =
b � a

n

Formula for baselength of rectangles, in a Riemann sum

approximation where all rectangles have equal baselength

What does the line

RS = sum(f(a+(k-1)*Deltax)*Deltax for k in [1..n]) (4.3.3)

signify? Well, the crucial thing to note here is that the quantity a + (k � 1)�x in (4.3.3) is the
left endpoint of the kth subinterval. To see this, think of it this way: to get to the left endpoint
of the kth subinterval, you start at x = a, and perform k � 1 “jumps” of length �x each.

Figure 4.10. The “jumps” required to get to

the left endpoint of the kth subinterval

So the line (4.3.3) is just saying “To get your approximation RS, add up the numbers f(xk)�x,
where xk is the left endpoint of the kth subinterval, for 1  k  n.” And this is exactly the sum
we want for our left endpoint Riemann sum approximation.

We summarize:
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Left endpoint Riemann sums: xk = a + (k � 1)�x

Formula for the sampling points xk, in a left endpoint

Riemann sum approximation (with all intervals of equal length)

By modifying RIEMANN.sws, you can calculate Riemann sums for other sampling points, other
intervals, other numbers of rectangles, and other functions. For example, to sample at midpoints,
you must start at x = a, and make (k � 1) + 1/2 = k � 1/2 jumps each of length �x. To sample
at right endpoints, you again start at x = a, but this time make k such jumps. So we have the
following formulas:

Midpoint Riemann sums: xk = a + (k � 1/2)�x
Right endpoint Riemann sums: xk = a + k�x

Formulas for the sampling points xk, in midpoint and right endpoint

Riemann sum approximations (with all intervals of equal length)

Of course, in a Riemann sum approximation, not all subintervals need to have the same length.
We have already done a number of approximations where various different lengths were used in
the same approximation. But equal lengths make for nicer formulas, and simpler code, and more
systematic algorithms. We will use subintervals of equal length except where otherwise noted.

Exercises

Part 1: Riemann sums “by hand”

For the exercises in this part, follow the procedure of Example 4.3.1 above. You should not use
the program RIEMANN.sws here.

You do not need to provide graphs of the functions in question, thought you may if you want. (A
sketch, by hand or computer, with a representative rectangle (see Figure 4.9), might be helpful
for you own reference, to help visualize what’s going on.)

Of course, you can use a calculator for computations like those in the last two lines of (4.3.2).

1. (a) Approximate the area A under the graph of f(x) =
p
1 + x3 on the interval [3,7], using a

left endpoint Riemann sum approximation with four rectangles, all of equal baselength.

(b) Do you think your estimate is an overestimate or underestimate of the actual area A? Hint:
you might want to sketch the function on this interval. Then consider the comments, following
Example 4.3.1, about increase/decrease versus underestimates/overestimates.

(c) Repeat parts (a) and (b) of this exercise, but this time using a right endpoint Riemann sum
approximation. (Everything else – the function, the interval, the number of rectangles – should
remain the same as above.)
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2. Repeat Example 4.3.1, but this time using a right endpoint Riemann sum approximation.

3. Repeat Example 4.3.1, but this time using a mipoint Riemann sum approximation.

Part 2: Using RIEMANN.sws

For the exercises in this part, do not try to write down, or compute, the requested Riemann sums
by hand. Simply use the above program RIEMANN.sws, suitably modified.

4. Calculate left endpoint Riemann sums for the function
p
1 + x3 on the interval [3,7] using 10,

100, 1,000, and 10,000 equally-spaced subintervals. (You may need to be a bit patient when n

is as large as 10,000.) Note that these Riemann sums approximations seem to be approaching a
limit – that is, zeroing in on some particular number – as the number of subintervals gets larger
and larger. What does that limit seem to be, rounded to the nearest hundredth?

5. Repeat Exercise 4 above for the same function, but this time, on the interval [1,3].

6. Using the results of Exercises 4 and 5 above, provide estimates of the area A under the graph
of f(x) =

p
1 + x3, over each of the following intervals: (a) [1,3], (b) [3,7], and (c) [1,7]. (For part

(c), think about how you can use the answers to parts (a) and (b).)

7. Repeat Exercise 4 above, but this time, use right endpoint Riemann sums.

8. (a) Repeat Exercise 4 above, but this time, use midpoint Riemann sums.

(b) Comment on the relative “efficiency” of midpoint Riemann sums, versus left and right endpoint
Riemann sums (at least for the function

p
1 + x3 on the interval [3,7]). (A more efficient procedure

is one that will “zero in” on a particular value faster than a less efficient one.)

9. Calculate left endpoint Riemann sums for the function

f(x) = cos(x2) on the interval [0, 4],

using 100, 1000, and 10000 equally-spaced subintervals.

10. Calculate right endpoint Riemann sums for the function

f(x) =
cos(x)

1 + x2
on the interval [2, 3],

using 10, 100, and 1000 equally-spaced subintervals. The Riemann sums are all negative; why?
(A suggestion: sketch the graph of f , preferably by computer. What does that tell you about the
signs of the terms in a Riemann sum for f?)
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11. (a) Calculate midpoint Riemann sums for the function

H(z) = z
3 on the interval [�2, 2],

using 10, 100, and 1000 equally-spaced subintervals. The Riemann sums are all zero; why?

(b) Repeat part (a) using left endpoint Riemann sums. Are the results still zero? Can you explain
the difference, if any, between these two results?

12. Using RIEMANN.sws, obtain a sequence of estimates for the area under each of the following
curves. Continue until the first three decimal places stabilize in your estimates.

(a) y = x
2 over [0, 1] (b) y = x

2 over [0, 3] (c) y = x sin(x) over [0, ⇡]

13. What is the area under the curve y = exp(�x
2) over the interval [0, 1]? Give an estimate

that is accurate to three decimal places. Sketch the curve and shade the area.

Part 3: Making approximations

14. The aim of this question is to determine how much electrical energy was consumed in a house
over a 24-hour period, when the power demand p was measured at different times to have these
values:

time power
(24-hour clock) (watts)

1:30
5:00
8:00
9:30

11:00
15:00
18:30
20:00
22:30
23:00

275
240
730
300
150
225

1880
950
700
350

Notice that the time interval is from t = 0 hours to t = 24 hours, but the power demand was not
sampled at either of those times.

(a) Set up an estimate for the energy consumption in the form of a Riemann sum p(t1)�t1 +
· · · + p(tn)�tn for the power function p(t). To do this, you must identify explicitly the value of
n, the sampling times tk, and the time intervals �tk that you used in constructing your estimate.
[Note: the sampling times come from the table, but there is wide latitude in how you choose the
subintervals �tk.]
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(b) What is the estimated energy consumption, using your choice of data? There is no single
“correct” answer to this question. Your estimate depends on the choices you made in setting up
the Riemann sum.

(c) Plot the data given in the table in part (a) on a (t, p)-coordinate plane. Then draw on the
same coordinate plane the step function that represents your estimate of the power function p(t).
The width of the kth step should be the time interval �tk that you specified in part (a); is it?

(d) Estimate the average power demand in the house during the 24-hour period.

Waste production. A colony of living yeast cells in a vat of fermenting grape juice produces
waste products – mainly alcohol and carbon dioxide – as it consumes the sugar in the grape juice.
It is reasonable to expect that another yeast colony, twice as large as this one, would produce
twice as much waste over the same time period. Moreover, since waste accumulates over time, if
we double the time period we would expect our colony to produce twice as much waste.

These observations suggest that waste production is proportional to both the size of the colony
and the amount of time that passes. If P is the size of the colony, in grams, and �t is a short
time interval, then we can express waste production W as a function of P and �t:

W = k · P ·�t grams.

If �t is measured in hours, then the multiplier k has to be measured in units of grams of waste
per hour per gram of yeast.

The preceding formula is useful only over a time interval �t in which the population size P does
not vary significantly. If the time interval is large, and the population size can be expressed as a
function P (t) of the time t, then we can estimate waste production by breaking up the whole time
interval into a succession of smaller intervals �t1, �t2, . . . , �tn and forming a Riemann sum

k P (t1)�t1 + · · ·+ k P (tn)�tn ⇡ W grams.

The time tk must lie within the time interval �tk, and P (tk) must be a good approximation to
the population size P (t) throughout that time interval.

15. Suppose the colony starts with 300 grams of yeast (i.e., at time t = 0 hours) and it grows
exponentially according to the formula

P (t) = 300 e0.2 t .

If the waste production constant k is 0.1 grams per hour per gram of yeast, estimate how much
waste is produced in the first four hours. Use a Riemann sum with four hour-long time intervals
and measure the population size of the yeast in the middle of each interval – that is, “on the
half-hour.”
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