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3.3 Inverse functions and the arctangent function

Much of what we have said about the natural exponential and logarithm functions carries over
directly to any pair of inverse functions. To explain this, we should first say precisely what it
means for two functions f and ¢ to be inverses of each other.

Definition 3.3.1. Two functions f and g are inverses if

(i) f(g(b)) =b, and (i) g(f(a)) = a, (3.3.1)

for every b in the domain of ¢ and every a in the domain of f.

For example: as previously noted, the functions f(x) = e* and g(z) = In(z) are inverses of each
other, by equations (3.2.5) and (3.2.6).

We mentioned in Section 3.5 that the functions f(z) = e* and g(x) = In(x) are “flips,” or reflections,
of each other about the line y = x. This is a general property of pairs of inverse functions. That
is: suppose we have any two functions f(x) and g(z) that are inverses of each other. Of course,
the function f(z) takes a number a in its domain to f(a). But by equation (3.3.1)(ii), the function
g(x) then takes f(a) back to a. Schematically, we have this picture:

N the function s fla)

y = f(x)

the function
fla) — —a
= g(v)

In other words: the function y = g(z) takes the function y = f(x), and reverses the roles of input
and output.

As noted earlier (in discussing exponential and logarithmic functions), swapping input with output
amounts to swapping the horizontal with the vertical. And again, this is the same as reflecting
everything about the line y = x. CONCLUSION:

If f and g are inverse functions of each other, then
the graph of y = g(«) is the graph of y = f(x),
reflected about the line y = .

Geometrical relationship between inverse functions
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Functions f (in red) and g (in green) that are inverse
to each other. The graph of y = g(x) is the graph
of y = f(x), reflected about the line y = x (dashed).

Let f(z) be a function that has an inverse function g(x). We claim that f(z) must satisfy the
horizontal line test, meaning no horizontal line can intersect the graph of f(z) more than once.
Why is this true? Well, suppose there were a horizontal line y = b intersecting the graph of f(z)
more than once. Then, since the graph of g(x) is just that of f(x) with the horizontal and vertical
directions swapped, we would find that the vertical line x = b intersects the graph of g(x) more
than once. But this is impossible, because we’ve assumed that g(z) is a function, and functions
must satisfy the vertical line test. (That is, no vertical line can intersect the graph of a function
more than once.)

This motivates the following.

Definition 3.3.2. We say that a function f is one-to-one, usually written as 1-1, if its graph
satisfies the horizontal line test: no horizontal line intersects the graph more than once.

Here’s another way of thinking about 1-1 functions. To say that no horizontal line intersects a
graph more than once is to say that no y-value on the graph can come from two different z-values.
So: to say that a function y = f(z) is 1-1 is to say that, if inputs x; and x5 are unequal, then the
outputs y; = f(z1) and yo = f(x2) must be unequal as well.

We have seen that only functions that are one-to-one can have inverses. This means that to
establish inverses for some functions, we will need to restrict their domains to regions where they
are one-to-one. Let’s consider some examples.

Example 3.3.1. Suppose f(z) = 2% and g(z) = \/r. The squaring function f(z) is not invertible
on its natural domain because it is not one-to-one there. (It’s clear from the graph that f(z) = 2?
does not satisfy the horizontal line test. For example, the line y = 9 intersects this graph more
than once. Or to put it another way, f(—3) = f(3) even though —3 # 3.)
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However, the squaring function f(z) = x* is invertible if we restrict its domain to non-negative
real numbers. Then

fg(b) = (Vb)" = b (for b>0)
and g(f(a)) = Va2 = a (for a > 0).
The second of these statements — particularly the equation va? = a — is only true on our restricted
domain of f. It fails if we allow a to be negative — for example, 1/(—3)2 = v/9 = 3 # —3.

We already know how to find the derivative of the square root function. But let’s compute this
derivative again (assuming we know the derivative of the squaring function), to further illustrate
how the derivative of an inverse function is related to that of the original function itself.

For our above functions f(z) = 2% and g(x) = /= we have, for appropriate values of z,

flg(x)) = .

Differentiate both sides: the derivative of the right-hand side is just 1, while the derivative of the
left-hand side is given by the chain rule. We get

or, solving for ¢'(x),

(3.3.2)

2

But we can simplify the right-hand side of (3.3.2): since f(z) = z*, we have f'(x) = 2z, so

agreeing with earlier results.

Note that we could have restricted the domain of f in another way to make it one-to-one: we
could have taken its domain to consist of non-positive real numbers z < 0, instead of non-negative
real numbers z > 0. Now the function g(x) = \/z is no longer the inverse of this restricted f. For
instance, g(f(—3)) = g(9) = 3 # —3. What would the inverse of f be in this case? (See Exercise
3 below.)

Example 3.3.2. Suppose y = tan(z). Note that this does not define a one-to-one function on the
natural domain of the tangent function. For example, tan(n/4) and tan(57/4) are both equal to 1,
even though 7/4 # 5w /4. (In fact, the the horizontal line y = 1 intersects the graph of y = tan(z)
infinitely often, since tan(km + 7/4) = 1 for every integer k.) So we need to restrict our domain
in order for our tangent function to have an inverse.

To this end, let’s consider the function f(z) = tan(z) with domain —7/2 <z < 7/2.
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Figure 3.10. The graph of f(x) = tan(x) on (—7/2,7/2)

As is clear from the graph, this function is 1-1 on the indicated domain. So it has an inverse
function g(z) there. This inverse function is called the arctangent function, denoted arctan(z).
Since f(z) = tan(z) has domain (—n/2,7/2) and range (—00,00), we find that g(z) = arctan(x)
has domain (—o0,00) and range (—m/2,m/2). The graph of g(z) looks like this.

L]
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Figure 3.10. The graph of g(x) = arctan(x)

To find the derivative of the arctangent function, we proceed in the usual way. Specifically: we
start with the fact that

tan(arctan(z)) = .

We differentiate both sides; on the left-hand side, we use the chain rule, and the fact that the
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derivative of the tangent function is the square of the secant function. We get

secz(arctan(:p))%[arctan(:v)] =1

or, dividing both sides by sec?(arctan(z)),

%[arctan(:v)] = sec%aritan(q:))' (3.3.3)
We can simplify the right-hand side using the trigonometric identity
sec?(0) = 1+ tan?(9).
Note that this identity implies
sec?(arctan(z)) = 1 + tan?(arctan(z)) = 1 + (tan(arctan(x)))2 =1+ 2% (3.3.4)

the last step because, again, tan(arctan(z)) = z. Putting (3.3.4) into (3.3.3) gives us our ultimate
result:

1
14 x2

% [arctan(x)] =

Derivative of the arctangent function

Example 3.3.3. Find (i) dd larctan(2 + 2°)] and (ii) di[2 + arctan®(r)].
r

dx
1 d 5t

d
luti (i) — 2 N = — " [2 = ——.
Solution. (i) dx[amtan( + 7)) 1+(2+x5)2dx[ +27] 1+ (2 + a5)?

4
(ii) %[2 + arctan®(r)] = %[2 + (arctan(r))°] = 0 + 5(arctan(r))4%[arctan(r)] = Sa%ar;z(r)

To conclude this section we observe that, if f and g are inverse functions, then the chain rule
gives us a method for finding the derivative ¢'(x), given knowledge of f'(x). We've seen this
method employed in the context of exponential and logarithmic functions (see the subsection “The
derivative of the logarithm function” in Section 3.5); in the context of squares and square roots
(see Example 3.3.1); and in the context of the tangent and arctangent functions (see Example
3.3.2). The strategy employed, in each case, was as follows:

Step 1. Begin with the formula f(g(x)) = x, where
f is the function whose derivative is already known.

Step 2. Differentiate to get f'(g(x))g’(x) = 1.

1
fg(x))
Step 4. Simplify the right-hand side if possible. This
simplification will often use the fact that f(g(x)) = =.

Step 3. Divide by g’(x) to get g'(x) =

Strategy for differentiating inverse functions
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Step 4 is often the “tricky” step. In the case of exponents and logarithms, or squares and square
roots, this step was fairly straightforward. But in the case of tangents and arctangents, we needed
to make the non-obvious observation that sec?(#) = 1 + tan?(f). This allowed us to obtain an
expression involving tan(arctan(x)), which simplified because the tangent and arctangent functions
are inverse to each other.

Finally: since an inverse to a function y = f(x) (when an inverse exists) is obtained by interchang-
ing the roles of x and y (that is, of input and output), we can sometimes find an inverse function,
algebraically, by making this interchange — that is, by writing z = f(y) — and solving for y.

Example 3.3.4. To find the inverse of the function

33—
y_ 2+ZL"
we interchange x with y:
3—y
r=—_—"
24y

and then solve for y:

x24+y)=3—-y

2r4+xy=3—1y
zy+y=3—2x

ylr+1)=3-2z

_3-2z
(R
. . 3—x
As a check on our work in the above example, we show that the functions f(z) = Sy and
g(x) = 52 truly are inverses, as follows:
r+1 ’

3—2x 3—(3—=2z)/(x+1)

f(g(x)):f(x-l—l):2+(3—2$)/(I+1)
3@ +1)-(3-2r) 3r+3-3+22
2@+ 1)+(3-22) 20+2+3-20

5%
===

z,

2

as required. (For the third “=" in this computation, we multiplied top and bottom by x + 1, to

simplify.)

Note that, once we’ve shown that f(g(z)) = z, we don’t need to also check that ¢g(f(z)) = z.
Why? Essentially because, if f(g(z)) = « for all z in the domain of ¢, then f(x) is the reflection
of g(x) about the line y = x. And geometrically, this is the same as g(x) being the reflection of
f(z) about the line y = x, which means ¢(f(z)) = « for all z in the domain of f.
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Example 3.3.5. Find the inverse g to the function f(z) = z? — 4 on the domain z > 0. What is
the domain of ¢?

Solution. We write y = 22 — 4, interchange x and y, and solve for y:

r=y>—4
Yy’ =z +4
y==+Vzr+4
We must choose the plus sign, because we have stipulated that f(z) have only nonnegative numbers

in its domain, so its inverse must have only nonnegative numbers in its range.

So our inverse function is g(x) = v/x + 4. The domain of g(z) is the set of all > —4, since this
is the range of f(z).

Exercises
d a 2 _
(a) T [3 arctan 4x] (d) dq [(1+¢%) arctan(q) — ¢
d
(b) %[earctan(x)] (e) diy[arctan?’(y ln(y))]

(c) %{arctan(i)] (f) %{Hﬁtan(y)l

2. Consider the function f(x) = 3z? — 5 on the domain z > 0. What is the inverse function to
f(z) on this domain? What is the domain of this inverse function?

3. Consider the function f(x) = z? on the domain x < 0. What is the inverse function to f(z)
on this domain? What is the domain of this inverse function?

4. Show that f(x) =1 — z equals its own inverse. What are the domain and range of f7
5. Show that f(z) = 1/z equals its own inverse. What are the domain and range of f7

6. Let n be a positive integer. and let f(z) = 2™. What is an inverse of f?7 How do we need to
restrict the domain of f for it to have an inverse? Caution: the answer depends on n.

7. What is the inverse g of the function f(z) =1— 327

1-3
8. What is the inverse g of the function f(x) = T g?
x
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2
9. What is the inverse of f(z) = % + 5 on the domain = > 07

10. Use the strategy in the box on page 155 and the fact that d[z3]/dz = 32? to derive the
formula for the derivative of /z. (Pretend you don’t already know how to differentiate /x.) See
Example 3.3.1 for a similar problem.

11. (a) Use a computer graphing utility to graph y = sin(x) on the domain —7/2 <z < 7/2.

(b) Explain in words how you can tell from the graph that y = sin(x) has an inverse function on
[—7/2,7/2].

(c) Denote the inverse function from part (b) of this exercise by arcsin(x). What is the domain
of arcsin(x)?

(d) Use Steps 1-3 of the strategy on page 155 to show that

) —
%[arCSIH(x)] - cos(arcsin(z))’

(See also Example 3.3.2 for a similar problem.)
(e) Use the fact that cos(z) = y/1 — sin?(x) on the domain [—7/2,7/2] to conclude that
d 1

— [arcsin(z)] =

dx V1—22



